

Al Applied to the Contracts Analysis of the Italian Public Administrations

Roberto Nai¹, Ishrat Fatima¹, Gabriele Morina¹, Emilio Sulis¹, Laura Genga², Rosa Meo¹ and Paolo Pasteris¹

¹Computer Science Department, University of Turin, Corso Svizzera 185, Torino (TO), 10149, Italy ²Eindhoven University of Technology, De Zaale, Eindhoven, Netherlands

ITAL-IA, Pisa, maggio 2023

Agenda

- Introduction
- Case study
- AI Applied to the Contracts Analysis of the Italian Public Administrations
 - Methodology
 - Results
- Process Mining and Law
 - Methodology
 - Results
- Conclusions

Introduction

- In this research, we explored the dataset of the National Anti-Corruption Authority (ANAC) in Italy on public procurement and the recorses related to public procurement issued by the Italian Administrative Justice (IAJ) courts.
- [RQ1] Our first goal was to identify which procurement led to disputes and recourses by identifying relevant procurement features.
- **[RQ2]** Our second goal was to develop a recommender system on procurement by applying machine learning algorithms and deep neural models to return similar procurement to a given one and find companies as potential bidders, depending on the procurement requirements.
- **[RQ3]** Our third goal is to automate the analysis of a public procurement dataset, contract awards, and appeal procedures with process mining (PM) techniques.

Case study

• Our work is based on **two legal datasets** involving the **public procurement process** in Italy.

Methodology [RQ1]

Methodology [RQ1]

• The labeled datasets were used as input for the machine learning algorithms, validating the classification models with a *StratifiedGroupKFold* method using as *group* category the procurement type: **Public Works**, **Services**, **Goods/Supplies**.

Results [RQ1]

• The following results show how the NLP method of *cosine similarity* improve the ability to recognize a reference between the ANAC and the IAJ datasets based on the available sentences (67,850).

Reference found by {feature}	Total	Overall percentage
Procurement identifier: {CIG}	8,418	12.4%
Denominations: {EO participant, EO winner, PA, Region/Court, Year}	4,178	18.5%
Similarity {procurement object, recourse object}	2,491	22.3%

Results [RQ1]

- The following diagrams show the results in terms of **Accuracy** and **AUC** of the models.
 - The top three models were: Extreme Gradient Boosting (XGB), Random Forest (RF) and Support Vector Machine (SVM).

Methodology [RQ2]

- Following the RQ2, we relied on *procurement object* (a summary textual description) to find similar procurement in the dataset.
 - To build an abstract and general representation of the contract's semantic content by training the numerical vectors called *sentence embeddings* using BERT.
 - Successively, given a case of an individual procurement (*query*), we searched for the most similar and relevant ones in the rest of the database using Sentence-BERT (SBERT) and Language-agnostic BERT Sentence Embedding model (LaBSE BERT): they are a multilingual version of BERT and use siamese networks to work on multilingual and Italian corpora.

Results [RQ2]

- To evaluate the performance of our recommender system, we decided to evaluate its Precision at 10.
 - Precision at 10 was calculated by a panel of three individuals working separately on a test set of recommendations for 100 random procurement instances for Public Works, Services, and Goods/Supplies.
- We observe how the recommendation system works better for tenders of Goods/Supplies (orange bars).

Methodology [RQ3]

- Following RQ3, the ANAC and IAJ merged datasets have been converted into an event log fulfilling the basic requirements for applying PM techniques:
 - each event in an event log includes at least three basic features: the identifier (case id) of the process it belongs to, the name of the activity which generated the event, and the corresponding execution timestamp.

Results [RQ3]

• As a proof of concept for PM, the results were analyzed considering each of the following PM *perspectives*: control-flow, organizational (resource), and time.

Time perspective highlighting slow transitions and bottlenecks in some activities of the legal process

Conclusion and future work

- In this research, we explored the dataset of the National Anti-Corruption Authority (ANAC) in Italy on public procurement and the sentences related to public procurement issued by the Italian Administrative Justice (IAJ) courts.
- In **future work**, we plan to investigate furthermore the **explainable AI techniques**.
- From the PM perspective, **future work** concerns the **prediction of features of interest from an organizational perspective**.
 - First, we consider investigating the remaining time after the activity of interest (i.e., the awarding), as well as the successful or unsuccessful outcome of a tender.

End of presentation

