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Abstract

Understanding, observing, and forecasting the environment are all essential step to support a more sustainable interactions
between human activities and the environment. Several areas of environmental modelling and classical analysis can be
beneficial from the application of novel approach such as Machine Learning techniques. In particular, we are currently
working on multiple areas for the development of machine learning techniques to be applied for (1) the modeling of the
convection permitting dynamical model for precipitation forecasting, (2) data interpolation for ocean observing systems,
in particular using data collected with ARGO floats, and (3) the automatic classification of seabeds for the assessment of
geological hazards. Here we detail the current state of the projects in those area and directions for future research.
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1. Introduction

Artificial Intelligence (AI) and machine learning (ML)
methods are starting to change the way the environment
is modeled, forecasting is performed, and, in general, the
way scientific computing will support research in the
future. In fact, as proposed in [1], there is a new merging
of scientific computing, scientific simulation, and Al that
results in what the authors call “simulation intelligence”.

The works presented in this abstract are all part of
this general movement towards the integration of ML
techniques in the scientific field. In particular, here we
present three different areas in which there are currently
active project:

» Deep learning techniques for the forecasting of
the precipitation distribution;

« Deep Learning for data interpolation in ocean
observing systems;
+ Automatic classification of the seabed.

As it is possible to observe, the three projects covers
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different aspects of the environment, adding ML as a sup-
port for existing simulation models or to manual labeling
and analysis of data.

2. Deep Learning for Precipitation
and Associated Risk

Every year across the world natural catastrophes due
to extreme weather and climate events cause casualties
and significant damage to properties and assets. Disaster
risk forecasting highly depends on the ability to correctly
quantify the phenomena related hazards, specifically at
high spatial and temporal resolution. As for the precip-
itation phenomenon, the classical method of deriving
precipitation distribution from simulations of dynamical
models is computationally too expensive when it comes
to high resolution, limiting its application. ML models
can help in this regard, by levering the huge amount of
data available from historical records and models simu-
lations. For the precipitation phenomenon few studies
have been carried out to date, among them [2] and [3],
both based on deep learning techniques.

In this direction, we are developing a novel deep learn-
ing framework which represents a first attempt in emu-
lating the convection permitting dynamical models. The
main objective is to improve the projection of climatic
impact-drivers relevant for risk assessment, in a much
more efficient way. In its first version, the framework
includes convolutional, recurrent and graph neural net-
works, to deal with the intrinsic characteristics of the data
and the associated challenges. The input data is derived
from the ERAS5 reanalysis dataset [4], with hourly values
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for temperature, specific humidity, eastward/northward
wind components and geopotential atmospheric parame-
ters, on a low-resolution grid of approximately 25 km. In
a supervised perspective, the target is represented by the
GRIPHO hourly precipitation observations dataset on a
high-resolution grid of 3 km [5]. The framework was ap-
plied to the northern Italy and successfully trained using
a time span of 15 years, from 2001 to 2015. Projections
in terms of yearly and seasonal precipitation distribu-
tion maps for the year 2016 were derived and compared
with observed values, showing a good capacity in resem-
bling the precipitation distribution. Finally the model
performance was tested in describing an extreme event.

Future research will focus on improving the frame-
work, extending its applicability in spatial-temporal
terms. The medium-term goal is to replace the input
reanalysis data with data from simulations of dynamical
models for the same atmospheric parameters. The long-
term goal is to produce risk maps (e.g., floods) for the
coming decades, integrating hydrological and vulnerabil-
ity information.

3. Deep Learning for Ocean
Observing Systems

Improving the capability of monitoring and predicting
the status of the marine ecosystem has important impli-
cations, also considering the changes caused by human
activities. In fact, marine ecosystem health is impacted
by human activity: during the last decades, the Ocean
has been increasingly affected by global changes (e.g.
acidification) caused by the exponential augmentation
of human assets. Among the many applications of Al in
the oceanographic field, we deal with the automated real-
time production of short-term forecasts of the state of
the sea, with the aim of increasing the reliability of mod-
eling predictions by correcting model results based on
real-time observations of physical, chemical, geological
and biological processes in the seas and oceans. Investi-
gating marine ecosystem evolution and variability can be
based on observations and modelling. In general, obser-
vations are accurate but limited and sparse both in time
and space, and, most importantly, unevenly available
among different variables. On the other hand, models
reproduce ecosystem dynamics and cover different spa-
tial and temporal scales of the processes but they can be
inaccurate due to several source of uncertainties.
Integrating models and observations is widely used to
provide optimal (e.g., in statistical sense) estimates of the
state of the oceans. Classically, it is done through data
assimilation approaches (e.g. Kalman filter, variational
approaches). Here, we propose two novel approaches us-
ing Al techniques to advance the model/observation inte-
gration. The first application consists on the integration

of Deep Learning model and data assimilation to improve
the forecast skill of a marine model forecast system of
the Mediterranean Sea [6, 7]. Specifically, the deep learn-
ing model is set to generate relationships between high-
frequency sampled variables and low-frequency ones
with the aims to generate reconstructed observations for
the data assimilation. We consider as a dataset to train
the deep learning model the collection of measurements
collected by the so-called ARGO profiling float. Existing
applications based on a feed-forward model (e.g., mul-
tilayer perceptron) are unaware of the typical shape of
the profiles of biogeochemical variables that they try to
infer. To overcome this issue we tested an innovative
approach based on convolutional deep learning architec-
ture to reconstruct nutrient profiles. The underpinning
idea is that the typical shape of the vertical profiles of a
variable is a constraint that has to be learned during the
training. Preliminary experimental results confirm that
the curves produced by the convolutional architecture
guarantee the generation of smoother — and thus, more
similar to those of the real world - profiles. A second
application consists of the direct integration though a
deep learning approach of observations and the determin-
istic model output to predict 3D fields of biogeochemical
variables in the Mediterranean Sea by integrating obser-
vations and the output of an existing deterministic model,
that is MedBFM. The deep learning architecture that we
exploited for the aforementioned task is based on the
inpainting [8], a computer vision technique developed to
fill missing pixels of a considered image. Here, the result-
ing ML model can instead be used to fill the gaps between
the observations in a way that “corrects” the output of
the determinstic model. We successfully developed and
trained this ML model on a portion of the Mediterranean
Sea, obtaining promising results, and now we are work-
ing on the extension of this to the whole Mediterranean
area.

4. Automated classification of the
seabed

Geological hazards or geohazards are the result of natural,
active geological processes. They include volcanic erup-
tions, earthquakes, tsunamis, landslides and several types
of mass wasting phenomena. Geohazards can endanger
and cause damage mainly in coastal areas where people
live and important economic infrastructures (harbors,
highways, airports, and so on) are located.

The assessment of geohazards is the basis for carrying
out susceptibility and risk assessment and to apply a sus-
tainable management of the seafloor and coastal areas
as indicated in several European and international direc-
tives. Assessing geohazards in marine environments is a
very time consuming and costly exercise as it implies us-



ing research vessels, geological and geophysical expertise
and expensive tools. In addition geological interpretation
and seabed mapping can be very subjective to experience
and time available.

Having the help of human-supervised Al could be
strategic when dealing with huge databases and to re-
duce the inevitable human subjectivity when interpreting
seabed data, thus providing a uniform interpretation. The
goal of this project is to construct a model that performs
an automated classification for the seabed and that in par-
ticular, is able to find and recognize in automated way (or
better automated human supervised) features indicative
or prone of to be geohazards.

First, we want to construct a model that automati-
cally map the seabed, using a bathymetric map as input.
For this purpose, we are using a model [9] that consist
in two Region-based Convolutional Neural Network (R-
CNN) [10]. GIS data (that specify the depth, the slope
and the curvature of the seabed) are used as input and
treat them as an RGB image. The image is cut in small
windows and for each window they apply the Selective
Search algorithm in order to localize features and then
train the networks [11]. The first CNN is basically a bi-
nary classification and tell us if there is or not a feature
indicative of hazard in some region; the second one classi-
fies features into different classes. Transfer learning from
VGG19 is used to train the networks. The overall objec-
tive is to improve the existing model described above in
order to have a best efficiency and less time-consuming
predictions.

Once we have a model that, given unlabelled data, re-
turns us the overall structure of the seabed, it comes the
complex step of assessing geohazards. Indeed, the fact
that a seabed feature (i.e., a submarine canyon) is prone
or not to hazard, depends from several factors: its depth,
its geological activity, its proximity to the coast etc. It is
easy to understand that it is not trivial to develop such a
model but would be a significant support to practitioner
to enable the reduction of vulnerability and to enhance
community resilience to disasters. For these reasons it is
important for the resulting ML-driven method to be able
to estimate the likelihood that seabed features may rep-
resent potential hazards. Given that this step is currently
not automate, such a model would provide a signficant
step forward in geohazards assessment for huge regions
such as for the Mediterranean sea.

The main goal of the project is to construct an Al tool
that is able to label a seabed map with all the possible
features indicative of geohazards. An further step would
be to provide an explainable model, providing a justifica-
tion for the choice the model makes about the possibility
of having or not an hazard. In other words developing an
Al model with human supervision able to provide infor-
mation and, possibily, explanation, in the assessment of
geohazards in marine environment would be extremely

useful to the coastal community dealing with hazards
and disasters.

5. Final Remarks

As it is possible to observe, ML model are being devel-
oped for a large number of applications for climate, sea,
and seabed. In all cases it is necessary to have a close
collaboration with the domain experts in order to under-
stand the requirements for a model and to evaluate it.
Some advantages of machine learning in those areas are
the ability to automate expensive human activities, e.g.,
manual labeling of geohazards, to integrate information
from multiple sources even if the relation between them
has not already be formalized (i.e., there is no “classical”
model explaining the relation between two variables),
and to capture spatial and temporal relations only from
the data. One obstacle is, however, that a ground truth
is not always present, but usually only sparse data and
deterministic models (which are themselves approxima-
tions of the reality). Hence, ML models should be able
to deal with uncertainty in the input data — and possibly
provide a corresponding estimation of uncertainty in the
output.
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