

AI Security and Safety: The PRAlab Research Experience

Ambra Demontis, Maura Pintor, Luca Demetrio, Angelo Sotgiu, Daniele Angioni, Giorgio Piras, Srishti Gupta, **Battista Biggio**, Fabio Roli

Ital-IA, Pisa, May 29, 2022

PRALab – Dept. of Electrical and Electronic Engineering

- Pattern Recognition and Application Laboratory
 - DIEE, University of Cagliari, Italy
- ~30 people working mainly on:
 - Biometric Recognition
 - Video Surveillance
 - Cybersecurity
 - AI/ML Security
- Recent projects on AI Security
 - HE Sec4AI4Sec 2023-2025
 - HE ELSA 2022-2024
 - PRIN 2017 RexLearn
 - FFG Comet Module S3AI

- 25+ research projects (last 10 years)
- 8 EU projects (2 coordinated)
- 1.5 M€ EU funding
- More than 3M€ overall funding
- 400k€ yearly turnover

The Elephant in the Room: Adversarial Examples

- AI/ML successful in many applications
 - Computer Vision
 - Speech Recognition
 - Cybersecurity
 - Healthcare

- ... but extremely fragile against adversarial examples
 - Carefully-perturbed inputs that mislead classification

school bus (94%)

=

ostrich (97%)

Attacks against AI are Pervasive!

Sharif et al., Accessorize to a crime: Real and stealthy attacks on state-ofthe-art face recognition, ACM CCS 2016

"without the dataset the article is useless"

"okay google browse to evil dot com"

Carlini and Wagner, *Audio adversarial examples: Targeted attacks on speechto-text*, DLS 2018 <u>https://nicholas.carlini.com/code/audio_adversarial_examples/</u>

Eykholt et al., *Robust physical-world attacks on deep learning visual classification*, CVPR 2018

- Demetrio, Biggio, Roli et al., Adversarial EXEmples: ..., ACM TOPS 2021
- Demetrio, Biggio, Roli et al., *Functionality-preserving black-box* optimization of adversarial windows malware, IEEE TIFS 2021
- Demontis, Biggio, Roli et al., Yes, Machine Learning Can Be More Secure!..., IEEE TDSC 2019

Pioneers of AI/ML Security

- Our team is internationally recognized among the pioneers of AI/ML security
 - we have been the first to discover the impact of gradient-based attacks on ML models

Attacker's Capability

Test data

Training data

we have been the first to discover and systematize adversarial attacks on AI/ML, prior to their application to deep learning

Attacker's Goal Misclassifications that do Misclassifications that Querving strategies that reveal confidential information on the not compromise normal compromise normal system operation learning model or its users system operation Availability Privacy / Confidentiality Integrity Evasion (a.k.a. adversarial Sponge attacks Model extraction / stealing examples) Model inversion (hill climbing) Membership inference Backdoor poisoning (to allow DoS poisoning (to subsequent intrusions) - e.g., maximize classification

B. Biggio and F. Roli, Wild Patterns: Ten Years After the Rise of Adversarial Machine Learning, Pattern Recognition, 2018 - 2021 Best Paper Award and Pattern Recognition Medal

error)

backdoors or neural trojans

B. Biggio, B. Nelson, and P. Laskov, *Poisoning Attacks against SVMs,* ICML 2012 - ICML 2022 Test of Time Award

Main Research Directions

Attacks on Machine Learning

ECML '13 / ICML '12, '15: Pioneering work on gradient-based evasion and poisoning attacks

USENIX Sec. '19: Transferability of evasion and poisoning attacks

IEEE TDSC '19, IEEE TIFS/ACM TOPS '21: Adversarial perturbations on Android and Windows malware

ECML '20: Poisoning attacks on algorithmic fairness

NeurIPS '21: Fast Minimum-Norm attacks

NeurIPS '22: Indicators of Attack Failures

WACV '23: Phantom Sponges

Robust Learning and Detection Mechanisms

IEEE Symp. S&P '18: Robust learning against training data poisoning

IEEE TDSC '19: Optimal/robust linear SVM against adversarial attacks (use case on Android malware)

NEUCOM '21: Fast adversarial example rejection

IEEE TPAMI '21: Learning with domain knowledge to improve robustness against adversarial examples

Ineffective Defenses and Flawed Evaluations

Detect and Avoid Flawed Evaluations

- **Problem**: formal evaluations do not scale, adversarial robustness evaluated mostly empirically, via gradient-based attacks
- Gradient-based attacks can fail: many flawed evaluations have been reported, with defenses easily broken by adjusting/fixing the attack algorithms

Pintor, Biggio, et al., *Indicators of Attack Failure: Debugging and Improving Optimization of Adversarial Examples*, NeurIPS 2022

Indicators of Attack Failure

Pintor, Biggio, et al., *Indicators of Attack Failure: Debugging and Improving Optimization of Adversarial Examples*, NeurIPS 2022

Pintor, Biggio, et al., *Indicators of Attack Failure: Debugging and Improving Optimization of Adversarial Examples*, NeurIPS 2022

What's Next?

What's Next?

Use-Inspired Basic Research Questions from the Pasteur's Quadrant

- Studying ML Security may help understand and debug ML models... but
- ... can we use MLSec to help solve some of today's industrial challenges?
 - To improve robustness/accuracy over time, requiring less frequent retraining
 - To detect OOD examples and provide reliable predictions (confidence values)
 - To improve maintainability and interpretability of deployed models (update procedures)
 - To learn reliably from noisy/incomplete labeled datasets

 Basic
 Use-inspired

 research
 Use-inspired

 (Niels Bohr)
 Louis Pasteur)

 Applied
 research

 (Thomas Edison)
 Chomas Edison

Consideration for use

• **Challenge:** to build more reliable and practical ML models using MLSec / AdvML

...

Open Course on MLSec

https://github.com/unica-mlsec/mlsec

https://github.com/pralab

Machine Learning Security Seminars

https://www.youtube.com/c/MLSec

The ELSA Project

e 1 1 i s

Battista Biggio battista.biggio@unica.it @biggiobattista

Thanks!