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Abstract

This paper provides an overview of recent advances in the application of artificial intelligence (Al) in industrial contexts
such as data center and the railway industries carried out at the University of Naples Federico II node of the CINI-AIIS Lab.
We discuss some challenges and opportunities associated with the adoption of Al in these industries. In data centers, Al is
being used to optimize resource utilization, reduce energy consumption, and ensure high availability of services. Despite
the potential benefits of Al there are also challenges associated with its adoption, including the need for high-quality data,
reliability and interpretability of Al-based systems, and ethical and legal concerns related to privacy, security, and bias.
From the other hand, in the railway industry, Al is being used to optimize train schedules, reduce delays, support predictive
maintenance operations and improve passenger safety by predicting and preventing accidents. In this paper, we focus on
Hard Disk Drive health status assessment task and on an overview of Al techniques for railway domain in the context H2020

Shift2Rail project.
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1. Introduction

In recent years, there has been a growing interest in
the application of Artificial Intelligence (AI) in indus-
trial contexts such as manufacturing, transportation, and
data centers [1, 2]. Al has the potential to transform
these industries by enabling them to operate more effi-
ciently, reduce costs, and improve safety and reliability.
In particular, the railway and data center industries have
witnessed significant growth in the application of AL
Data centers, which are critical to the functioning of
modern-day businesses, are facing challenges related to
resource utilization, energy consumption, and service
availability. The exponential growth in data traffic has
led to an increase in energy consumption and carbon
emissions, which has become a major concern for data
center operators. Al-based techniques such as deep learn-
ing, reinforcement learning, and anomaly detection have
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been used to optimize resource utilization, reduce energy
consumption, and ensure high availability of services.
These techniques can be used to predict and prevent
hardware failures, optimize cooling systems, and allocate
resources more efficiently.

The railway industry is facing numerous challenges in
meeting the increasing demand for reliable and efficient
transportation services. One of the main challenges is the
need to optimize operational efficiency while ensuring
passenger safety. Al-based techniques such as machine
learning and predictive analytics have been used to ana-
lyze large volumes of data from various sources, includ-
ing sensors, cameras, and social media, to gain insights
into passenger behavior, track conditions, and train per-
formance. This information can be used to optimize train
schedules, reduce delays, and improve passenger safety
by predicting and preventing accidents.

Despite the potential benefits of Al there are also chal-
lenges associated with its adoption in industrial contexts.
One of the main challenges is the need for high-quality
data, which is essential for training Al models. In ad-
dition, there are concerns about the reliability and in-
terpretability of Al-based systems, especially in safety-
critical applications. Finally, there are also ethical and
legal concerns related to the use of Al including issues
of privacy, security, and bias.

In this paper, we focus on Hard Disk Drive health
status assessment task and on an overview of Al tech-
niques for railway domain in the context H2020 Shift2Rail
project.
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2. HDD Health Status Assesment

Since hard drives often deteriorate gradually rather
than abruptly, we argue that temporal analysis methods
should be employed to model the sequential nature of the
dependencies within SMART attributes over time. Thus,
an approach to estimate the Remain Useful Life (RUL)
of a HDD has been proposed, by automatically identi-
fying specific health conditions on the basis of SMART
attributes values. This methodology is grounded in three
main steps:

« Hard drive health degree definition: in which
status (or health level) is defined for each hard
drive according to its time to failure;

« Sequences extraction: in which sequences in a
specific time window are extracted for each hard
drive;

« Health Status assessment through LSTM: in
which a health level is associated to each temporal
sequence.

In what follows, are described each component of the
proposed framework in detail.

2.1. Health degree definition

The degradation of hard drives in real-world data centers
is a gradual process that occurs over time. To account
for this gradual decay, a system has been developed to
measure the health status or level of a hard drive based
on how much time is left before it fails. In contrast to
the approach proposed in [3], this system includes an
automated step for determining the health level of the
hard drive.

More specifically, in this step has been considered only
the hard drives that are going to fail, introducing for each
of them an additional feature representing the time be-
fore failure. The data-set reports, for each hard disk, the
temporally sorted sequence of SMART attributes with a
specific sampling period. Denoting with m; be the num-
ber of samples for the hard disk j, it is possible to associate
each sample with an index i from 0 to m; — 1, represent-
ing the number of samples that follow it in the sequence
describing hard disk failure. As a consequence, the sam-
ple with index i = 0 is the last sample before failure. In
Figure 1, Time-to-failure is the feature representing the
time before failure for each hard drive whose meaning
depends on the sampling period while fi, f,, ..., f, are
the SMART attributes.

The idea is to build a Regression Tree (RT) for each
SMART attribute f; withi = 1,2...n, having the feature
representing the time before failure as a predictor and f;
as the numeric target value. Among all the resulting trees
(one for each SMART attribute f;), the one with the high-
est performance is selected, showing the attribute most

Hard drive ID | f; f, f, Time To Failure
1 | value | value |......... value | 3
1 | value | value |. . |value | 2
1 | value | value |. . | value 1
1 value | value |.... . |value 0
2 | value | value |......... |value | 240
2 value | wvalue |.... . |value 239
2 value | wvalue value 238
n | value | value value | 2
n | value | value |.... . |value | 1
n value | value value 0

Figure 1: Time to failure is a feature representing the time
before failure for each hard drive sample, while f;, f,, ..., f,
are the SMART attributes.

temporally dependent. Since the selected Regression Tree
(RT) presents splits only on the feature Time-to-failure,
the latter is used to distinguish hard drive health levels
according to the time before failure.

A different level or status should be assigned to sam-
ples belonging to hard drives that will not fail since they
have been excluded in this step. More specifically, the
samples belonging to the hard drives that will not fail are
labeled as Good.

2.2. Sequence extraction

To explore the temporal dependencies within the SMART
features periodically collected for each hard drive, fea-
ture sequences in specific time windows (TW) have been
extracted.

Let wand a' be the time window size and the set of
SMART features (fy, f>...f,) at time ¢, respectively. Pro-
posed model aims to predict hard drive health status at
time ¢ + 1 (Hs(t + 1)) considering the sequence (a’ " *1...,
a1 a'). For each a, the health status Hs(t) is defined
as the Regression Tree built , and the feature sequence
for each hard drive at time ¢ is extracted considering the
w — 1 previous samples (cf. Figure 2). Each sequence
results in a bidimensional array of size w x n, where n
is the number of SMART features considered. For each
hard drive, sequences are extracted with a stride of one.
It follows that m;—w+ 1 sequences are extracted for each
hard drive, where m; is the number of samples for the
disk j.

For each sequence (at_WH..., a1 a"), the hard drive’s
health level is defined by the health level of the set of
features a'*1. The result of this step is a sequence-based
data-set — a set of bidimensional arrays, each associated
to a health level representing the hard drive’s health

condition between two consecutive samples (i.e., a’ and
aH—l)



f, f, f, Hs
|
atw value |value | . .. .. .. value
gtw+l |value |value | . . .. .. value
w at™w*2 hwalue |value | .. .. ... value
at1 value |value | ... ... .. value
at value |value | ... ... .. value;
at*l  |value |value | ... . .. . value | Hs(t+1)

Figure 2: Sequence extraction step for a single hard drive.

2.3. Health Status assessment through
LSTMs

Because of the sequential, gradiently changing nature of
the SMART features, it is important that designed model
is able to capture dependencies across features over time.
Long Short Term Memory networks (LSTMs) are exten-
sion to recurrent neural networks, explicitly designed
with the purpose of learning long-term dependencies [4].
In the proposed framework, the input to each LSTM
layer is a three-dimensional data structure of size zxwxn,
where: z is the total number of sequences (or the batch
size at each iteration); wis the size of each sequence —
that size of a time window, in terms of time steps; n is
the total number of features describing each time step.
Since the percentage of failed hard drives is often small
compared to the percentage of good hard drives, the
sequence extraction step may result in an unbalanced
data-set with the majority of sequences belonging to the
Good level. As a consequence, a data balancing step is
introduced, so that the input to the network is a set of
balanced data.
In particular, the sequence-based data-set is balanced
by replicating the sequences belonging to the minority
classes. Sequences replication is an efficient balancing
strategy that avoids the polarization of the classification
model on a single class without creating synthetic data
or reducing the data-set size by sampling the instances
beloging to the majority class. The implemented classi-
fication network has two stacked LSTM layers with 128
units, followed by a single dense layer.

2.4. Experimental Evaluation

The prediction performance of the model have been
tested on the two different SMART data-set (Baidu and
Backblaze)lz, and then compared with those of three
other methods explored in the literature: a Classification

'http://pan.baidu.com/share/link?shareid=189977&uk=4278294944
*https://www.backblaze.com/b2/hard-drive-test-data.html

Tree model, a Random Forest model, and a model based
on Multiclass Neural Networks.

2.4.1. Performance Evaluation

Since each sequence is associated with one of the levels
presented in Section 2.1, the HDD’s health level assess-
ment as defined in this approach is a multiclass classifi-
cation problem with multivariate input variables.

The performance of proposed approach is first eval-
uated in terms of accuracy, precision, and recall. Since
the distinction between good and failed hard drives is
preserved in the labelling of the data-set, we express the
results in term of accuracy on good sequences (ACCg)
and accuracy on failed sequences (ACCr) — respectively,
the fraction of sequences correctly classified as Good,
and the fraction of sequence classified as the health lev-
els suggested by the regression trees. We also consider
the evaluation criteria introduced in [3], and measure
the accuracy of classifying good and failed sequences
for a tolerance of misclassification up to one health level
(ACCEOL and AccLOL),

Finally, we evaluate performance in terms of failure
prediction, by assessing failure detection rate (FDR) and
false alarm rate (FAR) for each model. This is done by
considering the levels Good, Very Fair, and Fair as Hard
drive good statuses; and the levels Soft Warning, Warning,
Alert, and Red Alert as Hard drive failed statuses.

2.5. Results and Discussions

We proposed a methodology to perform hard drive health
status assessment exploiting the temporal dependencies
of SMART attributes. In order to asses the effectiveness
of the proposal, this section reports the performance of
proposed methodology, and a comparison with several
state-of-art approaches.

In particular, Table 1 and 2 show results of the LSTM
based approach on the Baidu and Backblaze data-sets,
respectively.

Performance is reported for different sizes of the time
window (TW) used in the sequence extraction step. We
explored time window sizes from 4 to 48 hours for the
Baidu data-set, and from 5 to 15 days for the Backblaze
data-set. For the latter, we considered a prediction window
(q) varying from 15 to 45 days. As expected given the
ability of LSTMs to learn long-distance dependencies,
the best results are obtained with time windows of 48
hours and 15 days for the Baidu and Backblaze data-
sets, respectively.

We compared our best results with respect to the
sequence-independent models. The best results in terms
of accuracy on failed sequences are obtained with RF for
the Baidu data-set, and MNN for the Backblaze data-set


http://pan.baidu.com/share/link?shareid=189977&uk=4278294944
https://www.backblaze.com/b2/hard-drive-test-data.html

TW SIZE [hour] | Accuracy | Precision | Recall | ACCq ACCp | ACCIOF T ACCIOr FDR FAR
48 99.80% 99.1% 98.9% | 99.83% | 93.17% | 99.89% | 98.31% | 98.2% | 0.2%
36 98.78% 98.8% 98.7% | 99.80% | 91.89% | 99.87% | 97.45% | 97.37% | 0.2%
24 99.33% 98.9% 98.8% | 99.66% | 91.87% | 99.74% | 96.97% | 97.64% | 0.2%
12 98.71% 98.8% 98.6% | 99.58% | 78.06% | 99.68% | 90.54% | 92.14% | 0.4%
6 98.08% 98.3% 98.1% | 99.43% | 654% | 99.59% | 84.35% | 86.8% | 0.6%
4 97.74% 98.1% 97.8% | 99.28% | 60.29% | 99.53% | 82.47% | 85.08% | 0.6%

Table 1

Performance values for the LSTM models obtained by varying TW size on the Baidu data-set.
q [day] | TW SIZE [day] | Accuracy | Precision | Recall | ACCg ACCy | ACCIOF T ACCFor FDR FAR
15 5 95.88% 96.90% | 95.10% | 97.28% | 66.56% | 97.89% | 98.08% | 75.53% | 2.82%
15 7 95.81% 97.10% | 96.00% | 97.02% | 70.27% | 97.93% | 98.45% | 79.34% | 2.70%
30 5 94.54% 96.50% | 94.60% | 96.38% | 56.07% | 97.68% | 88.30% | 76.03% | 2.73%
30 7 93.93% 96.80% | 94.40% | 9559% | 59.15% | 97.07% | 89.37% | 80.70% | 3.29%
30 10 95.25% 97.40% | 96.10% | 96.84% | 61.84% | 97.59% | 91.35% | 85.48% | 2.73%
45 5 94.45% 96.70% | 94.93% | 9595% | 66.16% | 97.80% | 90.67% | 78.30% | 2.50%
45 7 95.82% 97.00% | 95.85% | 97.28% | 68.34% | 98.12% | 89.37% | 77.75% | 217%
45 10 96.56% 97.72% | 96.82% | 97.71% | 75.08% | 98.36% | 93.30% | 84.18% | 1.83%
45 14 98.45% | 98.33% | 98.34% | 99.21% | 84.49% | 99.40% | 96.65% | 91.48% | 0.72%

Table 2

Performance values for the LSTM models obtained by varying prediction window (q) and TW size on the Backblaze data-set.

Author Methods ACCg ACCp | ACCIOT T AccIor

Xu et al. [3 Multiclass NN | 99.19% | 16.01% | 99.40% | 43.34%

Xu et al. [3 CRF 99.57% | 28.51% | 99.59% | 61.30%

Xu et al. [3 RNN 99.73% 41.05% 99.93% 64.86%

Our Approach | LSTM 99.83% | 93.17% | 99.89% | 98.31%
Table 3

Comparison of our best model (LSTM - 48h) on the Baidu
data-set with previously proposed models on the hard drive
health status assessment task

Author Methods FDR FAR

Xu et al.[3 Multiclass NN | 83.21% 0.60%
Xu et al.[3 CRF 85.50% 0.22%
Xu et al.[3 RNN 87.79% 0.004%
Lietal[5] CT 95.49% | 0.09%
Zhu et al.[6] BP NN 94.62% | 0.48%
Shenetal[7] | RF 97.67% | 0.017%
Our Approach | LSTM 98.20% 0.20%

Table 4

Comparison of our best model (LSTM - 48h) on the Baidu
data-set with previously proposed models on the hard drive
failure prediction task.

Author Methods | Accuracy | Precision | Recall
Zhang et al.[8] LPAT+AIl 92.6% 89.30% 88.70%
Sun et al.[9] TCNN - 75.00% | 67.00%
Basak et al.[10] | LSTM — 84.35% 72.00%
Our Approach LSTM 98.45% 98.33% 98.34%

Table 5

Comparison of our best model (LSTM - TW = 14 days and g =
45 days) on the Backblaze data-set with previously proposed
models on the hard drive health status assessment task.

(98.13% and 96.17%). Results show that a sequence de-
pendent approach provides higher performance than a
sequence independent methodology, since the former is
able to capture the SMART attribute temporal dependen-

Author Methods FDR FAR

Shen et al.[7] RF 94.89% | 0.44%

Xiao et al.[11] | ORF 98.08% | 0.66%

Our Approach | LSTM 98.20% | 0.20%
Table 6

Comparison of our best model (LSTM -TW = 14 days and g =
45 days) on the Backblaze data-set with previously proposed
models on the hard drive failure prediction task.

cies.

Finally, a comparison between the proposed methodol-
ogy and some other proposals in the literature has been
performed, which had also been tested on the SMART
data-set. Tables 3, 4, 5 and 6 compare obtained best re-
sults on the Baidu and Backblaze data-sets with different
approaches for hard drive health status assessment and
hard drive failure prediction tasks.

To summarize, proposed approach outperforms all
these models in terms of accuracy on failed sequences,
FDR, and FAR both for hard drive health status assess-
ment and hard drive failure prediction tasks. Importantly,
experimental results demonstrate that the proposed ap-
proach is feasible for HDD health status assessment task
due to the pre-processing phase and the definition of a
specific model (LSTM) relying on the temporal sequence.
Furthermore, the proposed approach has also been ap-
plied to other contexts such as railway rolling stock equip-
ment [12], and IoT scenarios [13] resulting in efficient
and effective also in these fields.



3. RAILS: Roadmaps for Al
Integration in the rail Sector

The main objective of the H2020 Shift2Rail (S2R) project
RAILS (Roadmaps for Al Integration in the rail. Sector)
is to investigate the potential of Artificial Intelligence
(AI) techniques in the rail sector to contribute to the
definition of recommendations and roadmaps for their
implementation in various railway applications with a
specific emphasis on three main pillars: Safety and Au-
tomation, Predictive Maintenance and Defect Detection,
and Traffic Planning and Management. To be specific,
the RAILS project has been focusing on six Proofs-of-
Concept (PoCs), two for each pillar, intending to explore
Al techniques to eventually identify their limitations,
possible opportunities they can introduce, and directions
that should be taken for the fast take-up of Al in railways.

In the last years, there has been an increasing interest
in automatic train driving which led to the delineation
of some promising approaches that, whether based on
AT or not, could help to migrate towards a higher Grade
of Automation, up to GoA 3/4, of railway lines. One of
the main issues that are challenging this migration is the
fact that intrusions or obstacles could affect the safety of
such autonomous systems. To mitigate this factor, also
under the S2R programme, investigations have already
been performed towards the realisation of multi-source,
multi-technology, and multi-level systems (exploiting,
for example, multiple sensors, drones, and components
installed on-board the train and on the trackside) which
could help to improve the environmental perception of
running trains. However, these systems are as effective
as they are complex and potentially expensive. There-
fore, within the RAILS project, efforts have been oriented
towards the investigation of a “light” and cost-effective
solution that could potentially help to deal with the detec-
tion of any kind of obstacles (both known and unknown
a-priori) laying on rail tracks by exploiting of data coming
from a camera in combination with supervised and unsu-
pervised Al-based Computer Vision models (specifically,
Deep Autoencoders) to segment rails and, eventually, de-
tect possible obstacles. In addition to that, another, quite
innovative, PoC is being addressed which deals with
the integration of Al techniques for the introduction of
Virtual Coupling (VC), widely examined within the auto-
motive sector, in the context of autonomous trains. The
main idea is to investigate the possibility of allowing two
or multiple trains to act as a single convoy by exploiting
Train-to-Train communication network, to reduce the
headway between them, and a Reinforcement Learning
approach to implement the VC control strategy. Interest-
ingly, since one of the main challenges in the rail sector
is the lack of suitable datasets to train Al algorithms,
for these PoCs two simulators were built in order to col-

lect data for algorithms’ training and/or validate their
effectiveness. Data Augmentation and Transfer Learning
techniques were then (especially for the first PoC) used
to increase the dimension of the dataset and improve Al
algorithms performances respectively.

Concerning Predictive Maintenance and Defect De-
tection, attention is being posed to two of the most
safety-critical railway assets. Investigations are being
performed towards non-intrusive, cost-effective, and con-
tinuous monitoring of Level Crossings (LCs) by exploit-
ing cameras and microphones in combination with Deep
Learning approaches such as Convolutional Neural Net-
works and Object Detectors. The scope of this PoC en-
compasses two main directions: the first is to define a
multi-modular approach that could support the identi-
fication of the health status and the estimation of the
Remaining Useful Life of LC components; the second, on
the other hand, is to explore techniques that can help
to cope with the issue of the lack of available data, in-
deed, also in this case, one of the main challenges was to
build suitable datasets for the effective training of Al al-
gorithms and online repositories, real-life simulators, and
Data Augmentation and Transfer Learning techniques
were leveraged for this purpose. In addition to that, analy-
ses are being carried out to define the contribution Al can
bring to continuous monitoring and predictive mainte-
nance of rolling stock components. Lastly, in the context
of Traffic Planning and Management, the project is fo-
cusing on modelling and predicting train delays, a topic
that is of primary importance when it comes to under-
standing the possible congestion of rail networks and,
potentially, taking actions to mitigate this phenomenon.
In this context, efforts have been posed on primary de-
lays (i.e., delays generated by accidents/intrusions on rail
tracks) prediction and estimation by means of a Graph
Embedding Approach, while Graph Neural Networks
were investigated to understand how accidents could
trigger minor disturbances that, in turn, cause delays
which propagate throughout the railway network and
will cause, in the end, reactionary delays (i.e., knock-on
or secondary delays).

To conclude, it is important to underline that the pri-
mary purpose of the aforementioned PoCs was to gather
knowledge and evidence about the possible integration
of Al in railways by exploring different techniques that
could help to overcome possible issues (e.g., the prob-
lem of the lack of data). Hence, the final goal of the
project would be to contribute to the definition of valu-
able recommendations and roadmaps, to be disclosed in
the near future, that could support future research on Al
in railways.
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