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Noise and Non-stationarity in Financial Machine Learning
Example: S&P 500 Index
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Financial Machine Learning [2] differs from standard ML ap-
plications in many aspects, and in particular:
1. Financial asset prices are non-stationary time-series,
and differencing does not fully address the problem:
« Asset returns are (negatively) autocorrelated and
heteroscedastic, exhibiting volatility clusters
» Their distribution is non-Gaussian, with large kur-
tosis ("fat-tails")
2. Financial asset prices/returns exhibit a very poor signal-
to-noise ratio, exposing ML models to overfitting.
« E.g. Mean Hurst Exponent of daily S&P 500 clos-
Ing price is around 0.54 (yearly lag).

Hurst Exponent (rolling)

5000 = 0.7 -

4000 -
0.6

3000
2000

Return

Continual Learning

» Learning from a sequence of tasks {D;, ..., Dt}

Learning with Noisy Labels

Data come from a noisy distribution D = {(x;, )}, with
Y being the noisy label space
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- Experience Replay (ER): train with current data stream D; and

a buffer M of past data
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Problem formulation and Experiments

PROBLEM: Samples from the noisy label space ) are stored inside the buffer M

« Exploit small-loss criterion [3] to identify clean and

noisy examples Method

Split-N-CIFAR-10

» Fill the replay memory M with the clean examples only, Noise rate (symmetric) 0% 20%  40%  60%
selected via Gaussian Mixture Model (GMM) or Oracle Multitask 9169 8202 7204 54.83
Finetuning 19.66 18.83 18.02 15.99

BN cLean
B oy ER-ACE [1] 7115 53.82 37.43 22.87
ER-ACE w/ Oracle - 51.10 39.06 23.57
ER-ACE w/ GMM (OURS) - 52.90 37.95 24.93

Density

Table 1: Final Average Accuracy [T] of ER with Asymmetric
Cross Entropy (ER-ACE) combined with two different techniques
to identify noisy samples and prevent storing them inside the
memory buffer; comparison with some baseline methods.
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