

# **Novel Continual Learning Techniques on Noisy Label Datasets**

Monica Millunzi<sup>1,2</sup>, Lorenzo Bonicelli<sup>1</sup>, Alberto Zurli<sup>2</sup>, Alessio Salman<sup>2</sup>, Jacopo Credi<sup>2</sup>, Simone Calderara<sup>1</sup>

> <sup>1</sup>University of Modena and Reggio Emilia, Italy <sup>2</sup>Axyon AI

> > {name.surname}@unimore.it <sup>2</sup>{name.surname}@axyon.ai



University of Modena and Reggio Emilia



### Noise and Non-stationarity in Financial Machine Learning

Financial Machine Learning [2] differs from standard ML applications in many aspects, and in particular:

- 1. Financial asset prices are **non-stationary** time-series, and differencing does not fully address the problem:
  - Asset returns are (negatively) autocorrelated and heteroscedastic, exhibiting volatility clusters
  - Their distribution is non-Gaussian, with large kurtosis ("fat-tails")



1175

#### Example: S&P 500 Index

- 2. Financial asset prices/returns exhibit a very poor signalto-noise ratio, exposing ML models to overfitting.
  - E.g. Mean Hurst Exponent of daily S&P 500 closing price is around 0.54 (yearly lag).

### Learning with Noisy Labels

Data come from a **noisy distribution**  $\tilde{\mathcal{D}} = \{(x_i, \tilde{y}_i)\}_{i=1}^N$ , with  $\hat{\mathcal{Y}}$  being the noisy label space



## Continual Learning

- Learning from a **sequence** of tasks  $\{\mathcal{D}_1, \dots, \mathcal{D}_T\}$
- Experience Replay (ER): train with current data stream  $\mathcal{D}_t$  and a buffer  $\mathcal{M}$  of past data

$$\theta^* = \arg\min_{\theta} \mathbb{E}_{(\mathbf{x}, \tilde{y}) \sim \mathcal{D}_t} \left[ \mathcal{L}(f(\mathbf{x}), \tilde{y}) \right] + \mathcal{L}_R$$

$$\mathcal{L}_{R} = \mathbb{E}_{(\mathbf{x}_{r}, \tilde{y}_{r}) \sim \mathcal{M}} \left[ \mathcal{L}(f_{\theta}(\mathbf{x}_{r}), \tilde{y}_{r}) \right]$$



Problem formulation and Experiments

**PROBLEM**: Samples from the noisy label space  $\mathcal Y$  are stored inside the buffer  $\mathcal M$ 

- Exploit small-loss criterion [3] to identify *clean* and *noisy* examples
- Fill the *replay memory*  $\mathcal{M}$  with the clean examples only, selected via Gaussian Mixture Model (GMM) or Oracle



| Method                        | Split-N-CIFAR-10 |       |       |       |
|-------------------------------|------------------|-------|-------|-------|
| Noise rate (symmetric)        | 0%               | 20%   | 40%   | 60%   |
| Multitask                     | 91.69            | 82.02 | 72.04 | 54.83 |
| Finetuning                    | 19.66            | 18.83 | 18.02 | 15.99 |
| ER-ACE [1]                    | 71.15            | 53.82 | 37.43 | 22.87 |
| ER-ACE w/ Oracle              | -                | 51.10 | 39.06 | 23.57 |
| ER-ACE w/ GMM ( <b>OURS</b> ) | -                | 52.90 | 37.95 | 24.93 |

**Table 1:** Final Average Accuracy [<sup>↑</sup>] of ER with Asymmetric Cross Entropy (ER-ACE) combined with two different techniques to identify noisy samples and prevent storing them inside the memory buffer; comparison with some baseline methods.

#### References

- Caccia, Lucas, et al. "New insights on reducing abrupt representation change in online continual learning.", In [1] arXiv preprint arXiv:2203.03798 (2022).
- Coqueret, Guillaume. "Machine Learning in Finance: From Theory to Practice: by Matthew F. Dixon, Igor [2] Halperin, and Paul Bilokon, Springer (2020). ISBN 978-3-030-41067-4. Paperback." (2021): 9-10.

#### Acknowledgements

This work was supported by Axyon AI SRL and has received funding through the Decreto Ministeriale n° 352 of





