No-Reference Metrics for Standard Dynamic Range and High Dynamic Range Image Content

Francesco Banterle, Alessandro Artusi, Alejandro Moreo, Fabio Carrara, Paolo Cignoni

- In HDR/SDR Imaging, we need to determine and to understand what is happening during different steps of the pipeline:
 - or single image reconstruction;
 - **Compression**: we want small file size at maintaining high-quality;
 - keeping quality as it was "scene-referred".

Why Do We Need Metrics?

• Acquisition: we want to understand if there are artifacts due to acquisition

• **Tone mapping:** we want to adapt content for different display while

Reference Metrics

Reference Image

Distorted Image

Reference Metric

Probability Map

Q = 42.0

Quality Value

Reference Metrics: Current Limitations

- These models are very complex:
 - Difficult to port to GPUs with ease.
- HD image.
- Do we need a distortion map?
 - For most tasks we just need a single value!

• They are computationally expensive; e.g., minutes of computations for a full

Going No-Reference

No-Reference Metrics

Distorted Image

Probability Map

Q = 42.7

Quality Value

No-reference Metric

NoR-VDPNet(++): Architecture

Training Set

Distorted Image

Reference Image

TRAINING SAMPLE

Input Distorted Image

Target Quality Value

NoRVDPNet(++): HDR-VDP2.2/TMQI Datasets

	TRAINING SET	VALIDATION SET	TEST SET	TOTAL
HDR-C (HDR-VDP2.2)	49.602	6.216	6.216	62.034
SDR-D (HDR-VDP2.2)	80.244	10.025	10.044	100.313
TMO (TMQI)	106.290	13.320	13.320	132.930
ITMO (HDR-VDP2.2)	106.290	13.320	13.320	132.930

NoR-VDPNet(++): SDR-D Dataset

REFERENCE SDR IMAGE

BLUR DISTORTION

NOISE DISTORTION

NoR-VDPNet(++): SDR-D Dataset

REFERENCE SDR IMAGE

QUANTIZATION DISTORTION

SIN GRATE DISTORTION

NoR-VDPNet(++): HDR-C Dataset

HDR Image

JPEG-XT:

• Random Profile Random Residual Compressione

NoRVDPNet(++): TMO Dataset

Drago et al. 2003

18 tone mapping operators from the HDR-Toolbox: <u>https://github.com/banterle/HDR_Toolbox/</u>

Durand and Dorsey 2002

Reinhard et al. 2002

NoRVDPNet(++): ITMO Dataset

Input SDR Image

6 inverse tone mapping operators 4 available in the HDR-Toolbox: <u>https://github.com/banterle/HDR_Toolbox/</u>

Eilertsen et al. 2017 (tonemapped)

Santos et al. 20202 (tonemapped)

NoR-VDPNet(++): Loss and Encoding

- Loss is a classic MSE; it works well for predicting quantitative values:
- Encoding:
 - SDR Images: linear scaling to fit the range [0,1]
 - HDR Images: $\log_{10}(x+1)$

Results: HDR-C Test Set

0.2

NoRVDPNet

NoRVDPNet

0.2

Results: SDR-D Test Set

Results: ITMOS Test Set

0.2

NoRVDPNet

Results: TMOS Test Set

NoRVDPNet

Timings

NoR-VDPNet(++): Conclusions

- We can go from reference to no-reference;
- than a single distortion;
- Layer normalization increases quality;
- This scheme works for TMQI-I (SSIM-based);
- Still real-time performance.

When we model several distortions we have a larger error

Applications

Applications: TMO Optimization Task

Input HDR image

Tone Mapped Image

Tone Mapped Image

TMO without optimized parameters

Video Courtesy of Jan Fröhlich - Stuttgart HDR Video Dataset

Applications: Optimized TMO

TMO with optimized parameters

Application: Optimized TMO

(b) $\hat{Q} = 0.906/Q = 0.930$

(e) $\hat{Q} = 0.902/Q = 0.889$

(f) $\hat{Q} = 0.841/Q = 0.771$

(j) $\hat{Q} = 0.958/Q = 0.974$

(c) $\hat{Q} = 0.933 / Q = 0.914$

(d) $\hat{Q} = 0.918/Q = 0.903$

(g) $\hat{Q} = 0.951/Q = 0.831$

(h) $\hat{Q} = 0.875/Q = 0.909$

(k) $\hat{Q} = 0.967/Q = 0.976$

(1) $\hat{Q} = 0.997/Q = 0.979$

Applications: JPEG-XT Compression Task

Tone Mapped Metadata

Applications: Results JPEG-XT Compression

Input HDR image

Reinhard et al.'s TMO optimized with NoRVDPNet

> Tone Mapped HDR image for JPEG-XT

Q=86.99

Q=91.39

Applications: Photo Selection

Q=86.92

Q=76.26

Q=56.46

Q=59.9

Q=86.99

Applications: Photo Selection

Q=86.92

Q=56.46

Q=59.9

Q=76.26

Future Directions

- Going in the temporal domain.
- Extend approaches to perceptual uniform domains.
- Mix perceptual experiments results and metrics.

Future Directions

Thank you for your attention!

Please contact us at: <u>a.artusi@cyens.org.cy</u> <u>francesco.banterle@isti.cnr.it</u> or visit us: https://deepacamera.org.cv http://vcg.isti.cnr.it

esearch Centre on

Δήμος Λευκωσίας Nicosia Municipality

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 739578 and No. 820434, and from the Government of the Republic of Cyprus through the Deputy Ministry of Research, Innovation and Digital Policy.

This project is co-financed by the European Regional Development Fund and the Republic of Cyprus through the Research and Innovation Foundation (POST-DOC/0916/0034).

