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Abstract
The availability of labelled data is often limited, which hinders the potential of deep learning pipelines in industry. To address
this issue, many industries resort to third-party solutions that involve human annotators manually labeling data. However,
these solutions are costly, time-consuming, and their accuracy may be questionable. In this paper, we propose an alternative
approach that utilizes a deep learning system capable of automatically labeling images with varying levels of supervision from
human annotators. Our proposed Automatic Image Annotation system encodes a class using a prototype vector obtained by
averaging the projections of images annotated as belonging to that class by a pre-trained backbone. The system efficiently
annotates images in real-time without the need to memorize them. It can remember past annotations and also effectively
identify new classes. We have developed a web application (link to code) to demonstrate the effectiveness of our approach.
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1. Introduction
In the last years, Deep Learning has achieved impressive
results on a variety of tasks, from computer vision [1]
to NLP [2] and also as a tool to help natural sciences
model our world such as in biology [3] and in physics
[4]. This powerful tool is becoming more and more
pervasive. But, it comes with a drawback: in the
supervised learning realm the training procedure
needs labeled data. With the pace of our world,
data generation does not constitute a problem; the bot-
tleneck lies in the slow and painful annotation procedure.

The standard way to cope with this incomplete data
is to rely on human annotators. Human annotation is
typically performed by companies that, after a careful
interaction with the costumer, agree on a labeling
scheme. When such scheme has been defined, the data
is forwarded to several humans that subjectively carry
the job. This subjective step intrinsically carries low
homogeneity on the final labeling. Another problem, is
the quantity of data to be curated. Obviously, this reflects
on the quantity of time required to accomplish the task
which, in the end, results in more expensive services.
Due to these reasons, the call to use automatic tools to
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annotate data is nowadays taking place [5]. Although
an important topic, Automatic Image Annotation (AIA)
has not received enough attention from the research
community. In fact, according to latest reviews on
the topic [5, 6] most of the published works are from
2003-2016.

We then tackle such problem by devising a pipeline to
assist humans during the labeling process. By exploiting
the generalization power of pretrained backbones and
a minimal human feedback, we can cut down the time-
onerous and error-prone process of image annotation.

Contribution The main contributions of this work are
the following.

1. We develop an Automatic Image Annotation
(AIA) system to support humans in labelling
a stream of images by designing an appropriate
variant of the method described in [7].

2. The system is robust to domain-shifts. Since
the prototype vectors representing the different
classes are computed by projecting into the em-
bedding space of CLIP [8], the system is resilient
to domain-shifts and is almost free of catastrophic-
forgetting.

3. The system is efficient and user friendly.
The disentangled representation provided by
CLIP does not require additional expensive train-
ing procedures and it reveals to be very effective
for this kind of application. The cost to store
the protypes for each class is negligible and per-
forms a on-line update which is computationally
efficient. Moreover it allows human interaction
at different levels. Such an interaction is also
facilitated by the development of a web app im-
plementing the system.
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Figure 1: Complete visualization of our pipeline. Each image is processed incrementally, the system then through different
level of human feedback, speedup the human on the task of dataset labeling through a pipeline that exploit the powerful
feature representation of CLIP [8].

4. The good performance of the system is con-
firmed through numerical experiments. We
analyze the proposed system under different
datasets and assess the optimal perfomance.

Organization The work is organized as follows. In
section 2, we present an overview of the most related
work in literature. In section 3, we describe in details the
Automatic Image Annotation method we propose. In sec-
tion 4, we report the numerical experiments we used to
test the performance of the method. Finally, in section 5,
we draw conclusion and possible future directions.

2. Related Works
Our proposed method in this work combines Automatic
Image Annotation (AIA) with Incremental Learning. In
this section, we mention the most related literature of
these two fields with our work.

Automatic Image Annotation AIA has been the sub-
ject of numerous studies in recent years, and the research
community has developed a common taxonomy for its
different categories [5, 6]. We briefly describe these cat-
egories below. One category is generative model-based
AIA, which involves learning a joint probabilistic model
of image features and words from training datasets. An-
other category is nearest neighbor model-based AIA,
where the tag of the query data point is derived from the
most similar data points. For example, in [9], low-level
features are combined with distances to find the nearest
neighbor. Discriminative model-based AIA methods, on
the other hand, view image annotation as a multi-label
classification problem [10]. The third category, tag com-
pletion models, works by assuming an optimal matrix
dataset describing the correspondence between data and
labels, and recovering such initial matrix. Lastly, deep
learning-based solutions couple feature extractors with

side information, such as semantic label relationships, to
correctly predict tags [11].
Our approach combines the deep learning and nearest
neighbor-based approaches, falling into a mixture of
these two categories. By leveraging the strengths of both
approaches, we achieve better performance in handling
the challenges posed by incremental learning scenarios,
as shown in our experimental results.

Incremental Learning Nowadays the need of
using Incremental Learning (or Continual Learning)
approaches to overcome data shortage is becoming more
and more critical. These approaches aim at facilitating
the learning process of new tasks, by exploiting the
knowledge accumulated by solving previous tasks.
However, these Incremental Learning systems have
often revealed to be subject to an undesired negative
effect: the so-called catastrophic forgetting. More
specifically, during the incremental learning process,
these models gradually forget the tasks they previously
learnt in the past. In quite recent years, the usage of
pre-trained backbones has revealed to be a possible
and effective solution to overcome this issue, see e.g.
[12, 13, 14, 15, 16]. The main idea supported in these
works is that pre-training mitigates forgetting by
exploiting the disentangling power of the pre-trained
backbones.

In the next section we describe in detail the method we
propose for Incremental Automatic Image Annotation.

3. Method
Let 𝒳 be the images space. We propose a method to
automatically label a sequence of images (𝑥𝑖)𝑛𝑖=1 ∈ 𝒳 𝑛.
The proposed method is reported in algorithm 1. As
explained in detail below, the algorithm allows the
interaction with a human annotator, at different levels.



The algorithm takes in input a sequence of images,
a pretrained backbone Φ ∶ 𝒳 → ℝ𝑑 mapping the
input images in embedded vectors in ℝ𝑑, a distance
𝑑 ∶ ℝ𝑑 × ℝ𝑑 → ℝ+ among these vectors and a threshold
parameter 𝜖 < 0 used to identify new class labels. For
each class label the algorithm memorizes a prototype
vector that is computed by averaging the embedded
images annotated as belonging to the same class. Such
prototype vectors are memorized into a memory ℳ.
In order to denote the different class labels, we use
incremental integer numbers ̂𝑐 = {1, 2, 3, … }. The
metrics reported in order to evaluate the performance
of the algorithm are the classification accuracy 𝐴𝑐𝑙𝑎𝑠𝑠
and the new class detection accuracy 𝐴𝑑𝑒𝑡, which are
incrementally computed as new images arrive.

More specifically, at each iteration 𝑖 = 1, … , 𝑛, the algo-
rithm performs the steps below in order.

1. The algorithm receives the current image 𝑥𝑖 ∈ 𝒳
to be labelled.

2. The algorithm computes the corresponding em-
bedded vector 𝑧𝑖 = Φ(𝑥𝑖) ∈ ℝ𝑑 by the backbone
Φ.

3. If there exist a prototype vector in the current
memory with distance less than 𝜖 to the current
embedded vector 𝑧𝑖, the algorithm associates to
the current image the class index �̂�𝑖 associated to
the closest prototype vector in the memory and
increases the frequency of that class represents�̂��̂�𝑖
by one. The algorithm also returns the indicator
̂𝑛𝑐 = 0, indicating that the returned class is among

the classes already observed in the memory. On
the contrary, if there no exist a prototype vector
in the memory distant at most 𝜖 to the current
embedded vector, the algorithm associates the
current image to a new class label �̂�𝑖 = ̂𝑐, with
frequency �̂��̂�𝑖 = 1. In such a case, the algorithm
also returns the indicator ̂𝑛𝑐 = 1, indicating that
the returned class is a new class not contained in
the actual memory.

4. The human annotator tells to the algorithm if the
current image belongs to a previously observed
class (𝑛𝑐 = 0) or a new one (𝑛𝑐 = 1) and it pro-
vides to the algorithm the right class index 𝑘𝑖 the
current image belongs to.

5. The algorithm uses the feedback received by the
human annotator in order to update its memory.
Specifically, if the class has been already observed
before, the algorithm updates the prototype vec-
tor associated to that class by computing an in-
cremental average of the prototype vectors asso-
ciated to that class. On the contrary, if the class is

Algorithm 1 Incremental Automatic Image Annotation
1: Input A sequence of images (𝑥𝑖)𝑛𝑖=1 ∈ 𝒳 𝑛, an embed-

der (backbone) Φ ∶ 𝒳 → ℝ𝑑, an embedding distance
𝑑 ∶ ℝ𝑑 × ℝ𝑑 → ℝ+, an out-of-class threshold 𝜖 > 0

2: Initialization Memory ℳ1 = [], class label ̂𝑐 =
0 ∈ ℝ, accuracy 𝐴𝑐𝑙𝑎𝑠𝑠 = 0 ∈ ℝ, confusion matrix
𝐶 = 0 ∈ ℝ2×2

3: For 𝑖 = 1 to 𝑛
4: 1) Observe the image 𝑥𝑖
5: 2) Compute the embedding 𝑧𝑖 = Φ(𝑥𝑖)
6: 3) If there exist 𝑦 ∈ ℳ𝑖 s.t. 𝑑(𝑦 , 𝑧𝑖) ≤ 𝜖:
7: Define ̂𝑛𝑐 = 0 (old class)
8: Define �̂�𝑖 = argmin𝑦𝑘∈ℳ𝑖

𝑑(𝑦𝑘, 𝑧𝑖)
9: Update �̂��̂�𝑖 = �̂��̂�𝑖 + 1

10: Else:
11: ̂𝑐 = ̂𝑐 + 1
12: Define ̂𝑛𝑐 = 1 (new class)
13: Define �̂�𝑖 = ̂𝑐
14: Define �̂��̂�𝑖 = 1
15: 4) Receive user’s check: 𝑛𝑐 ∈ {0, 1}, 𝑘𝑖 ∈ ℕ
16: 5) If 𝑛𝑐 = 0:
17: Update 𝑛𝑘𝑖 = 𝑛𝑘𝑖 + 1
18: Pick up 𝑦𝑘𝑖 ∈ ℳ𝑖

19: Update 𝑦𝑘𝑖 =
𝑛𝑘𝑖−1
𝑛𝑘𝑖

𝑦𝑘𝑖 +
1
𝑛𝑘𝑖
𝑧𝑖

20: Else:
21: Update 𝑛𝑘𝑖 = 1
22: Define 𝑦𝑘𝑖 = 𝑧𝑖
23: Update ℳ𝑖+1 = ℳ𝑖 ∪ {𝑦𝑘𝑖}
24: 6) Update the classification accuracy

𝐴𝑐𝑙𝑎𝑠𝑠 =
𝑖 − 1
𝑖

𝐴𝑐𝑙𝑎𝑠𝑠 +
1
𝑖
𝟙{�̂�𝑖=𝑘𝑖} (1)

25: 7) Update the new class confusion matrix

𝐶(𝑛𝑐, ̂𝑛𝑐) = 𝐶(𝑛𝑐, ̂𝑛𝑐) + 1 (2)

26: Return 𝐴𝑐𝑙𝑎𝑠𝑠, 𝐶

new, the algorithm adds the new prototype vector
𝑧𝑖 to its memory.

6. The algorithm updates the computation of the
classification accuracy and the new class detec-
tion confusion matrix until that time, by com-
paring the quantities estimated by the algorithm
(denoted by the symbol ̂⋅) with the correspond-
ing exact counterparts returned by the human
annotator (denoted by the same letters without
the symbol ̂⋅).

Interaction with the human annotator In algo-
rithm 1, the interaction with the human can be also
queried less frequently, only at some iterations. In such a
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Figure 2: On left we report the accuracy per iteration over all the datasets to show the capabilities of the system on three
different datasets. On the right, we report the moving average over variable time frame of the accuracy to show that the
system improves over time. In both the plots we compare two distances to compute the closest prototype. As can be seen
CosDist provide slightly better performance.

case, at the iterations with no human annotator feedback,
the update of the memory can be done in a similar way
as described in the step 5) in the algorithm, by replacing
the true quantities with the corresponding estimates (de-
noted by the symbol ̂⋅). In section 4 we will propose an
analysis on the performance of the system under different
quantities of human supervision.

4. Experiments
To assess the performance of our method we defined
four different experimental settings and used the datasets
below.

• CIFAR100 [17]: the dataset is composed by 50000
train, 32 × 32 RGB images subdivided in 100
classess with 600 images each. This dataset has
been chosen to provide a comparative benchmark
in line with the research community.

• CelebA [18]: the dataset is composed of 64 × 64
RGB images divided in 10177 classes; it is com-
posed of 202599 images. This dataset represents
a fine grained benchmark to assess our system.

• Core50 [19]: the dataset is composed by 164866,
128 × 128 RGB images of 50 domestic objects di-
vided in 10 classes. Each object appears in 11
different scenarios. We opted for this dataset to
provide a more realistic dataset benchmark and to
test the system under the domain shift. In Figure 4
we show the structure of the data.

In all the experiments we implemented algorithm 1 with
backbone Φ equal to CLIP [8].

Figure 3: Visualization of one class (socket) of 10 of Core50
dataset. Each row represents a scenario where the same ob-
jects appear in different backgrounds. This realistic dataset
allows us to stress the system on domain shift setting.

Accuracy and Distance Analysis The first experi-
ment is aimed at measuring the performance in terms of
the classification accuracy for the images in the dataset.
We did not consider the first occurrence of each class
when computing the accuracy. In order to assess the
incremental improvement of the algorithm, we plot as
well the moving average accuracy with a variable time
frame. We implemented algorithm 1 by using two differ-
ent distances 𝑑 ∶ ℝ𝑑 × ℝ𝑑 → ℝ+:

• the Euclidian distance (𝑙2)

𝑑(𝑦1, 𝑦2) = ‖𝑦1 − 𝑦2‖2

• the cosine distance (𝐶𝑜𝑠𝐷𝑖𝑠𝑡)

𝑑(𝑦1, 𝑦2) = 1 −
⟨𝑦1, 𝑦2⟩

‖𝑦1‖2 ‖𝑦2‖2
.

The comparison results in terms of accuracy across the
three different datasets are presented in Figure 2. The
system’s performance shows a noticeable improvement
over time, starting off with poor accuracy and gradually



l2 (%) CosDis (%)

Core50 97.1 97.2

CIFAR100 86.3 86.6

CelebA 77.3 78.0

Table 1
Accuracy for different datasets using 𝑙2 distance and 𝐶𝑜𝑠𝐷𝑖𝑠𝑡
distance.

increasing its accuracy across all datasets. This behav-
ior is expected, as the centroids need to adjust to the
data and ”warm up” before delivering optimal perfor-
mance. For a summary of the numerical accuracy values
obtained, refer to Table 1. In the case of the Core50
dataset, the system is highly effective in separating all
classes, achieving exceptional performance with just a
few centroid updates. These results demonstrate the
effectiveness of our approach in tackling real-world clas-
sification tasks. It is worth noting that while challenging,
the CIFAR100 dataset may not be fully representative of
real-world usage. Nevertheless, we report our system’s
performance on this dataset to facilitate future compar-
isons. It is worth mentioning that the system requires
2000 iterations before achieving stable labeling on this
dataset. The CelebA dataset poses the greatest challenge
among the three datasets, as it represents a fine-grained
benchmark with a large number of classes and few ex-
amples per class. As a result, our system’s performance
on this dataset is relatively lower than that of the other
two datasets. This observation highlights the importance
of having a robust system that can align with the data,
which requires a larger number of images (around 10k)
for this particular dataset. Since the performance for
𝐶𝑜𝑠𝐷𝑖𝑠𝑡 are slightly better and stabler, we choose to use
it for all the other experiments.

OOD (new class detection) Analysis In this experi-
ment, we conducted out-of-distribution (OOD) analysis
on the Core50 dataset by varying the classification thresh-
old used to determine whether a new class instance is
OOD or not. The results are presented as the precision
vs. recall curve relative to the confusion matrix in Fig-
ure 4. While these results are empirical and may not
generalize to different datasets, they provide a starting
point for more thorough threshold estimation that could
potentially be applicable to unseen datasets.

Domain Shift Analysis In the third experiment, we
evaluate the robustness of our pipeline under incremen-
tal domain shift on the Core50 dataset. Specifically, we
compare the system’s performance over a 𝑖𝑖𝑑 set of im-
ages (similarly to the previous plots) against the same
set of images featuring coherent-ordered backgrounds.
In other words, all images from the same background
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Figure 4: Precision vs recall curve for the two different types
of distance, 𝑙2 (orange curve) and 𝐶𝑜𝑠𝐷𝑖𝑠𝑡 (red curve) over the
Core50 dataset.
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Figure 5: Accuracy as the system encounters new task and
experience domain-shift. Each dotted vertical red line rep-
resents a change in the scenario therefore a change in the
background of the images. The system show resilience on to
the distributional shift

scenario are presented before moving to the next sce-
nario. This experiment aims to demonstrate that the
CLIP space is resilient enough to cope with distributional
shift. As shown in Figure 4, there is only a slight drop
in performance when the background scenario changes,
which becomes increasingly irrelevant as the centroids
fine-tune. These results demonstrate the effectiveness of
our approach in handling domain shift, which is a critical
aspect of real-world applications.

Self-Annotation In our final experiment, we evalu-
ated the performance of our pipeline under minimal hu-
man feedback. We present the results on the challeng-
ing Core50 dataset under domain-shift in Figure 4. The
findings reveal that even with minimal interaction, our
system can achieve good results, indicating that it can
autonomously propose correct labels for the input data.
These results demonstrate the effectiveness and efficiency



of our approach in minimizing human intervention, mak-
ing it suitable for real-world applications where manual
labeling can be time-consuming and expensive.
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 h.i. 0%, SL, ACC = 0.995
 h.i. 0%, Non-SL, ACC = 0.867
 h.i. 10%, SL, ACC = 0.995
 h.i. 10%, Non-SL, ACC = 0.936
 h.i. 50%, SL, ACC = 0.997
 h.i. 50%, Non-SL, ACC = 0.982

Figure 6: Comparison of different levels of human interaction
(h.i.) in the self-labeling (SL) case. As can be seen with 10%
of probability of interaction of human feedback the system
is able to autonomously label images with small amount of
data.

5. Conclusion
In this work, we proposed a deep learning system
for automatically annotating a sequence of images
with different levels of active human supervision. The
system encodes a class by a prototype vector that is
computed by averaging the projections of the images
annotated as belonging to the same class by a pretrained
backbone. The system is computationally efficient
and does not require memorizing the images. Our
pipeline efficiently keeps memory of the past, and, at
the same time, identifies new classes. We also devel-
oped a web app for our method and carried extensive
numerical analysis to assess the robustness of the system.

In the future, it would be interesting to further investi-
gate the applicability of the proposed method to different
scenarios and extend the pipeline with a learnable mod-
ule. It would be also interesting to provide theoretical
certification for its performance.
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