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Abstract
The detection of faults in smart electrical grids is a crucial task as it can have significant economic and societal
impacts. In recent years, data-driven approaches have been adopted for various smart grid applications,
including fault detection and load forecasting. This study aims to explore the challenges associated with
ensuring the security of machine learning (ML) applications in the smart grid context. Despite the widespread
use of data-driven algorithms, their robustness and security have not been thoroughly examined in all power
grid applications. Our research demonstrates that deep neural network methods used in smart grids are
vulnerable to adversarial perturbations. Additionally, we highlight the weaknesses of current ML algorithms
in smart grids to various adversarial attacks by examining fault localization and type classification problems.

1. Introduction
The World Health Organization reports that inade-
quate infrastructure security causes at least one in
every ten patients suffering. Power grid networks
are a critical energy infrastructure [1], and their
security is essential to societal well-being. Electri-
cal faults in power grids can be caused by natural
disasters such as lightning, tree or bird contact, or
aging of equipment, which may result in large-scale
cascading effects that could harm the country’s
economy and security [2]. Therefore, detecting and
classifying faults with high accuracy is crucial to
the power supply industry and the overall security
of critical energy infrastructure.

The paper focuses on fault classification and their
occurring area in power grids. Fault zone classifi-
cation (FZC) aims to find the zone where the fault
has occurred, while fault type classification (FCT)
aims to determine the class of the fault type. Pre-
vious literature has utilized a combination of tools
and techniques from electrical engineering, signal
processing, and artificial intelligence (AI) [3, 4, 5]
to solve the above fault classification tasks. Among
them, machine-learned (ML) models, notably those
based on deep learning, have witnessed an increase
in their acceptance in the current infrastructure of
power systems, owing to the huge amounts of data
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Figure 1: A hypothetical example of targeted adver-
sarial attacks against fault zone prediction in smart
grids.

spanning energy networks.
However, the complexity of the current (deep)

inference methods poses a vulnerability to adver-
sarial attacks, which can exploit the confidentiality,
integrity, or availability of smart grids (SGs). Adver-
sarial attacks are operationalized through adversar-
ial examples, subtle but non-random perturbations
designed to induce an ML model to produce incor-
rect outputs, such as misclassifying an input sample.
Adversarial attacks can cause catastrophic harm to
society due to their often-impenetrable nature.

Figure 1 illustrates a motivating scenario where
an attacker breaches a communication network in a
supervisory control and data acquisition (SCADA)
system to launch a targeted adversarial attack on
the fault prediction system. The attacker’s objective
is to launch a targeted adversarial attack, i.e., to
cause the ML model employed in the SCADA’s fault
classification system to misclassify an input sample
into a known but erroneous class. To accomplish
this goal, in the FZC scenario, the attacker selects
as (illegitimate) the target class label, the one that
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can cause greater damage and suffering, so as to
prolong the expedition and recovery effort. These
examples highlight the potential catastrophic harm
that adversarial attacks can cause if left unchecked
due to their often impenetrable nature [6].

The key contributions of this study include in-
vestigating the impact of adversarial attacks on
several fault classification problems, namely FTC
and FZC, and their combination, analyzing adver-
sarial attacks by examining different experimental
settings and performing empirical experiments on a
widely adopted dataset based on the IEEE-13 test
node feeder. In summary, the importance of this
research lies in its potential to improve the overall
security of power grids and their impact on society.
We highlight the critical role that power grids play
in people’s lives and societal well-being, emphasiz-
ing that their instability or inadequate distribution
of electrical energy can directly affect people’s lives.
By improving the fault classification process and
mitigating the impact of adversarial attacks, the
research can enhance smart grids’ robustness, and
efficiency, thus contributing to a more sustainable
application of AI in power grid systems.

2. Problem definition
Adversarial task. Given a training dataset 𝒟 of 𝑛
pairs (𝑥, 𝑦) ∈ 𝒳 × 𝒴, where 𝑥 is the input sample,
and 𝑦 is its corresponding class label, the classifi-
cation problem is formulated as finding a target
function 𝑓𝜃 ∶ 𝒳 → 𝒴 that can predict the class
label 𝑦 surroundings the input sample 𝑥, where 𝜃 is
the model parameter. The goal of the adversarial
attacks is to find a non-random perturbation 𝛿 to
produce an adversarial example 𝑥𝑎𝑑𝑣 = 𝑥 + 𝛿 such
that it can induce an inaccurate detection (e.g.,
mis-classification). The methods by which 𝑑𝑒𝑙𝑡𝑎 is
learned are referred to as adversarial attacks, and
they can be either targeted or untargeted.

Definition 1 (Targeted adversarial attack). Given
a trained classifier 𝑓 (x; 𝜃) and a test instance from
the dataset x0 ∈ 𝒟 where 𝑓 (x0; 𝜃) = 𝑦0, the goal of a
targeted attack is to perturb x0 with a small budget
‖𝛿‖ ≤ 𝜖 such that the perturbed sample would be
mis-classified to the target label 𝑦𝑇 ≠ 𝑦0, referred
to as the mis-classification label. The problem can
be represented using an unconstrained optimization
problem formulation

min
𝛿∶‖𝛿‖≤𝜖

ℒ(𝑓 (x0 + 𝛿; 𝜃), 𝑦𝑇) (1)

One can note that in this case, here the at-
tacker aims to minimize the distance (loss) between

the adversarial prediction 𝑓 (x0 + 𝛿) and the mis-
classification label 𝑦𝑇.

Definition 2 (Untargeted attack). The goal of the
attacker in an untargeted attack is to cause any
mis-classification to maximize the loss between the
adversarial prediction and the legitimate label 𝑦0

max
𝛿∶‖𝛿‖≤𝜖

ℒ(𝑓 (x0 + 𝛿; 𝜃), 𝑦0) (2)

as such, it is clear that the attacker’s objective
in this scenario is to cause any mis-classification,
regardless of the specific type.

3. Approach
We have conducted adversarial attacks against two
machine-learned fault classification tasks in smart
electrical grids, which serve as the core attack tar-
get. The attacks are conducted as non-targeted
and targeted. This section discusses our strategy in
depth.

3.1. Fault Classification in Smart Grids.
We consider different multi-class classification prob-
lems pertinent to fault prediction in smart grids
with 𝐾 ≥ 2 classes in this paper, in which 𝑋 is the
input space and 𝑦 = {1, 2, ..., 𝐾} the output space.
Our problem showcases two different target labels
for the problems at hand (i) fault location and (ii)
fault type. Therefore, the main task is split into
three sub-tasks:

1. Fault location classification (FLC): with 𝐾 =
4 the task aims to classify a given signal into
its originating zone as shown in Table 1.

2. Fault type classification (FTC): with 𝐾 = 11
the task aims to classify a given signal into
one of the predefined fault types as shown in
Table 1.

3. Joint location and type classification
(FLC+FTC) 𝑘 = 44 integrating the both
fault class labels in the preceding cases;

where, (1) and (2) are explicitly contained in the
dataset, while (3) is derived by combing each dif-
ferent possible combination of task 1 and task 2.
Thus, we can state that the joint task is expected
to be a more complex task compared to the former.



Table 1
The characteristic of the dataset used for training the machine-learned fault classification models in this work.

Item Details

Fault type

phase to ground AG, BG, CG
phase to phase AB, AC, BC
phase to phase to ground ABG, ACG, BCG
three phase ABC
three phase to ground ABCG

Fault location

zone 1 branch 632-671
zone 2 branch 632-633
zone 3 branch 692-675
zone 4 branch 671-680

Fault resistance

0.0010, 0.0273, 0.0535, 0.0798
0.1061, 0.1323 0.1586, 0.1848
0.2111, 0.2374, 0.2636, 0.2899
0.3162, 0.3424, 0.3687, 0.3949
0.4212, 0.4475, 0.4737, 0.5, 1, 2

3.2. Adversary threat model.
Before examining the effects of adversarial attacks,
we explain the adversary threat model. The adver-
sary’s assumption entails:

• Adversary goal. The adversary is interested
in mis-classifying smart-grid fault classifica-
tion tasks in each of the three FZC, FTC,
and joint sub-tasks through the use of two
types of attacks: untargeted vs. targeted. In
the latter situation, the purpose may be to
produce more difficult-to-reach or difficult-
to-resolve (mis-classification) labels in order
to obstruct or delay the recovery of the task.

• Adversary knowledge. Our assumption is
white-box setting where the attacker knows
all of the parameters of the feature extrac-
tion model used to estimate the perturbation
he/she wants to estimate. In addition, the
attacker has full access to the input features
that would be changed as a result of the at-
tack. The attacker can also obtain the class
labels in targeted attack scenarios.

Similar to other works in classification, we evaluate
the effects of targeted and untargeted attacks as
the reduction in classification accuracy.

4. Experimental Evaluation
We analyzed adversarial attacks against smart grids
on a dataset acquired from IEEE-13 test node feeder.
In the following, we begin by presenting the experi-
mental setup; afterward, we discuss the experimen-
tal results.

4.1. Datasets
For data collection and creating the training dataset
for the fault classification in smart grids, similar
to [7, 8, 3] we used short-circuit faults that were
injected to IEEE-13 node test feeder using the MAT-
LAB Simulink environment. The node feeder con-
tained renewable energies such as wind turbine and
photovoltaic system. We divided the network into
four zones, adjacent to four load flow buses (num-
bered via 671,633, 675, and 680, see [9]), and mea-
sured the three-phase voltage signals.

We applied 11 short circuit faults to four specified
zone in the IEEE-13 network. These faults cover
every conceivable short-circuit faults and are sum-
marized in Table 1. To ensure having a sufficient
number of samples in the training dataset, each
fault was generated with 22 different fault resis-
tance values [7, 10]. Our final training dataset con-
tained 4 (zones)×11 (faults)×22 (resistance values)×
4 (measured locations) = 3872 samples. Note that
we collected (measured) signals from 4 locations
regardless of locations, and after feature extraction
(see below) stacked them together to create a super-
vector which was fed into the neural network ML
model.

To inject faults, the entire simulation duration
was carried out in the time interval 𝑡 = [0.0 − 0.022],
with the network frequency 60𝐻𝑧, sampling time
0.00001. Each fault with every resistance was ap-
plied at a certain start time 𝑡 = 0.01 and revoked at
a specified end time 𝑡 = 0.02, hence 𝑡𝑓 = [0.01 − 0.02]
represents the faulty duration and 𝑡ℎ = [0−0.01] rep-
resents the healthy duration. For the signal type,
in this work we only relied on (three-phase) volt-
age signals and kept investigation of other possible
signals such as current for future investigation.

The time series signals were represented as



Figure 2: Three tasks under targeted and untargeted adversarial attacks. Classification accuracy for 𝐹𝑍𝐶 = 0.7134,
𝐹𝑇𝐶 = 0.4569, and 𝐹𝑍𝐶 + 𝐹𝑇𝐶 = 0.4543. Best results for C&W were obtained under ℓ∞ for untargeted attacks and
ℓ2 for targeted attacks. Note that the starting point of noise power for all attacks and random noise is 0.001.

discrete features retrieved from the time, fre-
quency, and wavelet domains using temporal,
Discrete Fourier transform (DFT), and Discrete
wavelet transform (DWT) analysis, as previously
explored [11, 12]. Afterwards, we extract from each
domain, six features related to energy, maximum, as
well as the 4-th moment of their probability distribu-
tion functions (PDFs) (e.g., mean, norm, skewness,
kurtosis). The overall length of the feature vectors
utilized in the learning model is 48, divided into
6 (time)+6 (DFT)+36 (DWT), where we employed
6 (coefficients) × 6 (aggregation operations) for the
DWT features, resulting in a 36-dimensional feature
vector.

4.2. Adversarial Attacks
The performed attacks consist of the fast gradient
sign method (FGSM), basic iterative method (BIM)
[13], and Carlini and Wagner (C&W) [14]. FGSM is
a white-box attack that employs the sign of the loss
function’s gradient to learn adversarial perturba-
tions and BIM is the iterative version of the FGSM.
Formally, in the untargeted scenario, FGSM aims to
generate a perturbation that maximizes the training
loss formulated as

𝛿 = 𝜖 ⋅ sign(▽𝑥ℓ(𝑓 (𝑥; 𝜃), 𝑦)) (3)

where 𝜖 (perturbation level) represents the attack
strength and ▽𝑥 is the gradient of the loss function
w.r.t. input sample x, 𝑦 is the legitimate label and
sign(.) is the sign operator. A targeted FGSM attack
is, instead, formulated as

𝛿 = −𝜖 ⋅ sign(▽𝑥ℓ(𝑓 (𝑥; 𝜃), 𝑦𝑇)) (4)

in which the goal of the attacker is maximize the
conditional probability 𝑝(𝑦𝑇|𝑥) for a given input 𝑥.

The second category of adversarial attacks is Car-
lini and Wagner. It is a powerful attack model for
finding adversarial perturbation under three various
distance metrics (ℓ0, ℓ2, ℓ∞). Its key insight is similar
to L-BFGS [? ] as it transforms the constrained
optimization problem into an empirically chosen
loss function to form an unconstrained optimization
problem as

min
𝛿

(‖𝛿‖𝑝𝑝 + 𝑐 ⋅ ℎ(x + 𝛿, 𝑦𝑇)) (5)

where ℎ(⋅) is the candidate loss function.
The C&W attack has been used with several

norm-type constraints on perturbation ℓ0, ℓ2, ℓ∞
among which the ℓ2 and ℓ∞-bound constraint has
been reported to be most effective [14].

5. Experiments and Results
5.1. Explored Machine-Learnings Tasks
Model and training details. We trained a deep neu-
ral network, a Multi-layer Perceptron (MLP), for
the three classification tasks specified in Section 3.1
The model is made of an input layer, two dense
layers, and an output layer. The latter is the only
layer that varies throughout the three tasks, as its
number of neurons must correspond to the number
of output classes in each task. The tasks require sep-
arate training phases, which all take place with the
same settings, using 500 Epochs, Adam Optimizer,
and a fixed learning rate of 10e-3 with a batch size
of 20. The hyper-parameters were obtained after
fine-tuning.
Implementation of the attacks. We employed the
IBM Adversarial Robustness Toolbox to perform
the adversarial attacks due to its full compatibility



with Keras and its wide offer of suitable attacks for a
deep learning model. The performed attacks consist
of FGSM, multi-step (BIM), and C&W attacks.
These attacks were performed in both untargeted
and targeted scenarios.

5.2. Results
Evaluation Questions. To obtain a better under-
standing of the effectiveness of the examined adver-
sarial attacks against fault classification systems in
SGs, through the course of experiments, we intend
to answer the following evaluation questions.

RQ 1: Against the three faults classification tasks
in SGs presented in Section 3.1, how effective
are adversarial perturbations generated by
different adversarial attack methods (FGSM,
BIM, and C&W) compared to random noise?

RQ 2: How does the performance of attacks change
when we alternate between the attack goals?

Discussion. We begin our experimental study by
addressing the above evaluation questions.

Answer to RQ 1. This research question veri-
fies whether the application of adversarial attacks
against fault classification systems (FZC, FTC, and
joint) has a sensible impact on the behavior of the
ML models. As shown in Figure 2, all investigated
adversarial attacks FGSM, BIM, and C&W have
a much greater impact than random perturbation
across three tasks and under different noise levels
(𝜖), with the effect growing as the perturbation bud-
get increases. Comparing the strength of the three
adversarial attack models, BIM is the strongest in
all tasks. For instance, in the case of (untargeted,
FTC) with an attack budget (noise level) equal to
𝜖 = 0.04, BIM untargeted adversarial attack accu-
racy reaches 0.05, whilst FGSM and C&W reach
0.09 and 0.16, respectively, under the same condition.
The effect of attack target (targeted vs. untargeted)
is stronger on BIM and C&W than on FSGM. For
example, for the FTC (𝜖 = 0.04), the classification
accuracy is 0.21 vs. 0.05 (BIM-untargeted vs. BIM-
targeted), while for FGSM the corresponding dif-
ference is only 0.1 vs. 0.09 (FGSM-untargeted vs.
FGSM-targeted).

In summary, the attacks’ powers might be con-
trasted according to BIM>C&W>FGSM (the first
being the strongest). The lone exception is C&W-
targeted, which deviates from the trend and per-
forms poorly, while C&W-untargeted performs well
in all the explored scenarios.

Answer to RQ 2. This research question verifies
how much the performance of different adversarial

attacks varies across smart grid fault prediction
tasks, and whether the complexity of these tasks
impacts the performances obtained.

We start this by assessing the absolute power of
attacks across three tasks. At 𝜖 = 0.04 the power
of attacks FGSM-untrg, BIM-untargeted, C&W-
untargeted, FGSM-targeted, BIM-targeted, C&W-
targeted is equal to 0.166, 0.160, 0.281, 0.271, 0.265,
and 0.631 respectively. Thus, w.r.t the base ML
model (0.713), we may remark a relative degrada-
tion of 329% , 345% , 153% , 163%, 168%, and 13%.
The equivalent relative degrading power of attacks
for FTC task are 396%, 756%, 175%, 374%, 108%,
17% and for the joint FZC+FTC task include 339%,
1408%, 226%, 779%, 206%, 4.9%. Thus, the aver-
age degradation power for (untargeted, targeted)
goals are, FZC=(275.6%, 114.6%), FTC=(442.3%,
166.3%), FTC=(657.6%, 329.9%). We might notice
that both untargeted and targeted attack models
work better (are stronger) as the task gets more
complicated and this is true for both types of tasks.

In summary, the result of empirical evaluation
shows that the complexity of the fault prediction
tasks (in SGs) impacts the effectiveness of the ex-
plored adversarial attacks, meaning the attacks are
better able to manipulate the decision outcomes
according to FZC+FTC>FTC>FZC.

6. Conclusion
This work examines the security of fault classifica-
tion systems in smart electrical grids powered by
deep neural networks. Minor adversarial perturba-
tions can reduce the quality of fault classification
systems, highlighting the need for further studies
to defend against adversarial training and detection
methods (see [15]). Visual explanation of such ad-
versarial threats [16] would constitute another inter-
esting direction, which future work will investigate.
Additionally, multi-party computation techniques,
such as federated learning, could be used to develop
privacy-preserving fault-prediction systems [17, 18],
allowing separate zones to train models without
exchanging data with a central server.
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