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Abstract
Popular industrial robotic problems such as spray painting require (i) adaptivity to free-shape 3D objects and (ii) planning
multiple paths to solve the task. Yet, existing solutions make strong assumptions on input surfaces and output paths, limiting
applicability in real-world scenarios. We introduce a novel 3D deep learning framework designed to target arbitrary 3D
surfaces and generate a variable number of unordered paths. This is achieved by predicting short path segments and combining
them to form long-horizon paths. We validate our approach on robotic spray painting tasks by releasing PaintNet, the first
public dataset of real-world industry-grade painting paths on free-shape 3D objects. Our experiments demonstrate that the
proposed approach predicts smooth output paths covering up to 95% of previously unseen object surface instances. The
project page is available at https://gabrieletiboni.github.io/paintnet/.
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1. Introduction
Conditioning robotic tasks on free-shape 3D objects is
essential for many industrial applications and often these
tasks unfold over long-time horizons, requiring signifi-
cant amounts of computational resources for optimiza-
tion and planning. Robotic spray painting is a typical
example of this problem setting, where the robot must
generate multiple trajectories for painting a surface, with
each trajectory being a separate path through space. Even
a simple planar surface becomes difficult when consider-
ing both its two sides, and the difficulties increase when
facing an object composed of convex and concave parts
with different samples showing significant variability in
shape and size. The number and length of output paths
will differ for every object instance. Despite its impor-
tance in product manufacturing, robotic spray painting
remains a largely unsolved problem due to the lack of
affordable and flexible solutions.
Existing research studies rely on decoupling the task

into 3D object partitioning into convex surfaces, and
offline trajectory optimization through either domain-
specific heuristics [1, 2, 3, 4, 5, 6, 7, 8] or reinforcement
learning-based policies [9]. Such approaches rely on
simplified premises and are heavily tailored for specific
shapes and convex surfaces only, which restricts their
ability to generalize to novel objects. Additionally, ap-
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Figure 1: Overview of our method for multi-path prediction
of 6D-pose spray painting paths given a raw 3D point-cloud
in input.

proaches designed for autonomous 3D inspections and
coverage path planning require expensive offline opti-
mization routines, which hinder their practical applicabil-
ity for industrial production lines [10, 11, 12, 13]. These
limitations highlight the need for more suitable solutions
that can operate on arbitrary 3D surfaces and efficiently
handle complex multi-path planning problems.
In this work, we propose a novel method to address

these challenges by designing a deep learning framework
that can deal with unstructured high-dimensional input,
such as 3D objects in the form of point clouds, and in-
herently cope with multiple output paths. Our approach
learns a representation that captures geometric proper-
ties and surface details of a 3D object and consecutively
predicts path segments that can be later concatenated to
reconstruct long-horizon robotic paths (see Fig. 1). Un-
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Figure 2: Overview of a few representative instances for each of the four categories included in the PaintNet dataset.

like heuristic techniques that need to be re-designed ad
hoc for every task and object, our method can be applied
to any 3D object-conditioned multi-path robotic task.
We ran an extensive experimental analysis on our

newly designed dataset: PaintNet is the first collection
of expert spray painting demonstrations on 3D objects
in a multi-path setting. We plan to publicly release it
to encourage future AI research on relevant industrial
problems.

2. The PaintNet Dataset
The PaintNet dataset includes a total of 845 data pairs
of 3D objects and corresponding expert spray painting
demonstrations, collected in a real-world industrial sce-
nario. It covers several shapes and task-specific trajectory
patterns, spanning over four object categories of grow-
ing complexity: cuboids, windows, shelves, and containers.
The data was generously provided by the EFORT group1

and later preprocessed by the authors. In particular, all
object meshes are released in a subdivided, smoothed
watertight [14] version to avoid sharp edges and holes.
Representative data samples are illustrated in Fig. 2.

3. Method
We approach multi-path learning for spray painting as a
point cloud-based inference task, and present a tailored
deep learning model to deal with unstructured output
paths—i.e. unordered, and variable in number and length.
The final objective of our pipeline consists in predict-
ing path segments that are smoothly aligned and can
be concatenated to resemble the original long-horizon
strokes.

Segments Prediction. To guide the training of our
model, expert paths are decomposed into unordered fixed-
length segments. An optimal trade-off between the num-
ber (𝐾) and length (𝜆) of predicted segments can there-
fore allow the model to inherently cope with the un-

1https://efort.com.cn/en/index.php/group

structureness of the original output space. We denote
the set of ground truth path segments as S = {s𝑘}𝐾𝑘=1
composed of 𝜆 ordered poses—segment length—with
s𝑘 ∈ ℝ𝜆×6. Specifically, we consider an overlap of one
pose among consecutive within-stroke segments to en-
courage contiguous predictions, resulting in a total num-
ber of 𝐾 = ∑𝑖=1,…,𝐼⌊𝑁𝑖−𝜆/𝜆−1⌋ + 1 ground-truth segments.
Our model takes as input the object point cloud X

composed of unordered 3D points 𝑥𝑝=1,…,𝑃 ∈ ℝ3, and
provides as output a set of path segments Y = {𝑦𝑘}𝐾𝑘=1,
each of which contains 𝜆 ordered poses 𝑦𝑘𝑙=1,…,𝜆 ∈ ℝ6.
The learning objective is pursued by minimizing the

following loss:

ℒ𝑦2𝑠 =
1
𝐾
∑
𝑦∈Y

min
s∈S

‖𝑦 − s‖22 +
1
𝐾
∑
s∈S

min
𝑦∈Y

‖s − 𝑦‖22 . (1)

The symmetric Chamfer Distance [15]-based loss func-
tion above drives the prediction of unordered path seg-
ments close to the ones in the ground truth.
We furtherly bias the learning process to encourage

output segments to be contiguous. To this end, we intro-
duce the two sets of posesℬ = {𝑦𝑘1 }𝐾𝑘=1 and ℰ = {𝑦𝑘𝜆}

𝐾
𝑘=1,

that respectively collect the beginning and ending poses
of predicted segments. We then design an additional
self-supervised Chamfer-based loss which guides close
segments to have overlapping initial and ending poses:

ℒ𝑏2𝑒 =
1
2𝐾

{ ∑
𝑦𝑘1∈ℬ

min
𝑦 𝑗𝜆∈ℰ

‖𝑦𝑘1 − 𝑦 𝑗𝜆‖
2
2 + ∑

𝑦𝑘𝜆∈ℰ

min
𝑦 𝑗1∈ℬ

‖𝑦𝑘𝜆 − 𝑦 𝑗1‖22} ,

(2)
with 𝑗 ≠ 𝑘. Overall, we train our model to optimize
ℒ = ℒ𝑦2𝑠 + 𝛼ℒ𝑏2𝑒, with 𝛼 ∈ ℝ+.

Intra-stroke Concatenation. We propose a simple
technique based on segment proximity and alignment
to demonstrate how predicted unordered path segments
may be concatenated to reconstruct long-horizon paths
executable on a real robot. Specifically, we interpret the
segments as nodes of a graph and we aim at concatenat-
ing them such that each segment 𝑘 has at most one outgo-
ing 𝑒+𝑘 ≤ 1, and one incoming edge 𝑒−𝑘 ≤ 1, where 𝑒 is the
signed edge degree. For each segment 𝑘, we evaluate the

https://efort.com.cn/en/index.php/group


Table 1
Left: Predicted poses on representative PaintNet test instances (light blue) with corresponding ground-truth strokes (orange).
Right: Spray painting coverage visualization when executing predicted and expert poses on a spray painting simulator. The
colormap ranges from green (low paint thickness) to yellow (high paint thickness).
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distance 𝑑𝑘 = 𝑚𝑖𝑛𝑗‖𝑦𝑘𝜆 −𝑦 𝑗1‖22+‖(𝑦𝑘𝜆 −𝑦𝑘𝜆−1)− (𝑦 𝑗2−𝑦 𝑗1)‖22 s.t.
𝑗 ≠ 𝑘 and 𝑒−𝑗 = 0, which considers proximity in space and
orientation, as well as similarity in segment directions.
Then, we connect two segments with a directed edge
from 𝑘 to 𝑗 in case 𝑑𝑘 falls below a predefined threshold 𝜏,
proceeding in ascending order of 𝑑𝑘.

Baselines. Due to the lack of generalizable data-driven
solutions in current literature (see Sec. 1), we design two
novel learning-based baselines for comparison with our
model: point-wise prediction and multi-path regression.
The former baseline uses a state-of-the-art shape comple-
tion pipeline to output unordered 6D poses rather than
3D points. The latter attempts to directly regress long-
horizon output strokes, assuming that these are fixed in
number and length across the training set—hence suitable
for the cuboids category only.

Evaluation metrics. We introduce two evaluation
axes to assess the performance of the considered base-
lines. One is the standard pose-wise Chamfer Distance
(PCD) [15] to evaluate the goodness of the predicted dis-
connected poses w.r.t. the expert poses. The other is the
percentage of surface covered by the predicted strokes—
Paint Coverage (PC)—when executed on a spray painting
simulator, relative to the ground truth.

4. Experiments
Implementation details. Our pipeline leverages an
encoder architecture based on PointNet++ [16], that acts
as a feature extractor from the input point cloud of 5120
down-sampled 3D points to a latent space of dimensional-
ity 1024. A 3-layer MLP is then appended to generate out-
put poses, with hidden size (1024,1024). Output 6D poses
are encoded as the 3D Cartesian location plus the 3D unit

Table 2
Chamfer Distance averaged over each category’s test set, up-
scaled by 104. The lower the better.

Cuboids Windows Shelves Containers

Point-Wise Prediction 959.29 950.72 455.74 1073.15

Multi-Path Regression 8.32 × 105 - - -

Ours (𝜆 = 10) 37.98 118.50 56.06 364.54

Ours (𝜆 = 4) 18.25 57.17 36.65 274.84

Table 3
Spray painting coverage: % of covered mesh vertices with
respect to ground-truth trajectories. Results are averaged
over the test set. The higher the better.

Cuboids Windows Shelves Containers

Point-Wise Prediction 5.42% 39.90% 26.40% 71.99%

Multi-Path Regression 79.41% - - -

Ours (𝜆 = 10) 79.64% 68.84% 70.88% 82.88%

Ours (𝜆 = 4) 95.30% 84.05% 73.03% 89.32%

vector indicating the 2-Dof orientation of the conic gun
nozzle. Overall, we optimize our loss function ℒ with
𝛼 = 0.5, orientation vectors weighted by 0.25, learning
rate 10−3, Adam optimizer, and 1200 epochs. Further-
more, we initialize our network with pre-trained weights
from a shape classification task on ModelNet [17], and
normalize input point-clouds by independently centering
to zero mean and down-scaling by a category-specific
factor. We carry out separate trainings for each PaintNet
category of varying complexity while keeping the same
hyperparameters.

Segments Prediction We report qualitative results on
a subset of test instances in Tab. 1 (Left), and the full quan-
titative results on the test set in terms of PCD in Tab. 2.
Despite optimizing for the PCD evaluation metric explic-
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Figure 3: Intra-stroke concatenation post-processing step
(𝜏 = 0.15) on cuboids and windows, from our approach (𝜆 = 4).

itly, the point-wise prediction baseline applied to path
generation leads to highly sparse poses, failing to pre-
serve structure across all object categories. Interestingly
enough, directly regressing a known number of 6 strokes
for the cuboids category (multi-path regression baseline)
also turns out to be problematic due to compounding
errors on euclidean distances among high-dimensional
sequences. On the other hand, with 𝜆 = 4we observe the
capability of our model to predict output path segments
that closely resemble the ground truth and maintain a
contiguous structure across all categories. Intuitively, the
network is biased towards learning local spray painting
patterns, which drastically simplifies the task and does
not require learning implicit high-level planning. At the
same time, the attraction loss term ℒ𝑏2𝑒 assures aligned
and contiguous predictions with nearby segments.

Spray Painting Coverage. We perform a thorough
paint coverage analysis by executing the disconnected
predictions—segments, single poses or long-horizon
strokes—in a spray painting simulation in a random
permutation. Ground-truth paint thickness references
are obtained through the execution of the known long-
horizon trajectory. Qualitative results describing de-
posited paint thickness on a few instances of PaintNet are
depicted in Table 1 (Right). The complete quantitative
paint coverage values are reported in Table 3 Overall, we
draw similar conclusions as for the inference analysis:
uniformly sparse poses predicted by the point-wise pre-
diction model lead to poor coverage results, while the
contiguous nature of predicted path segments with 𝜆 = 4
allows for up to 95.30% surface coverage. These results
importantly demonstrate that supervised learning is a
promising approach for learning the downstream task
without directly optimizing for spray painting coverage.

Intra-stroke Concatenation. We inspect the capabil-
ity of our proposed post-processing step to reconstruct
long-horizon strokes for practical execution on robotic
systems. We demonstrate the effectiveness of the intra-
stroke concatenation step in Fig. 3, highlighting the con-

tribution of both the attraction lossℒ𝑏2𝑒 and overlapping
component to obtain optimal qualitative and quantita-
tive results. In particular, we note that paint coverage
results are preserved after the concatenation step, albeit
not exactly the same: an effect likely due to the merging
of overlapping poses during the concatenation.

5. Conclusions
In this paper, we tackle the core robotic problem of long-
horizon, multiple path generation for tasks involving free-
form 3D objects. In this context, we introduce PaintNet,
the first industry-grade supervised dataset for robotic
spray painting. We then present a novel method for
learning the underlying task by building on 3D deep
learning architectures and predicting path segments. We
validate our method on the PaintNet dataset and evalu-
ate its performance in simulation. Future work enabled
by PaintNet will include the evaluation of more paint-
ing quality metrics beyond coverage, such as thickness
accuracy deviation. In addition, investigating learning
methods incorporating painting quality feedback could
also lead to improved performance. Finally, we believe
the proposed approach can also pave the way for research
on other object-centric multi-path tasks in robotics, such
as sanding, welding, or cleaning.
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