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Abstract
EEG-based brain-computer interface (BCI) devices have proved to be powerful tools for predicting human emotions. Although
Deep learning (DL) techniques have been extensively used to build emotion recognition architectures using EEG-based BCI,
they lack interpretability. We propose a prototype of an EEG-based emotion recognition system that can detect the user’s
emotional state using a deep learning model embedded into an interpretable framework to analyze the decisions of the model
and the contributions of the features. The proposed model achieves high performance while showing relevant information on
the impact of frequency and spatial features used to predict the emotional states.

1. Introduction
The research field of affective computing has achieved
remarkable results enabling the integration of emotion
recognition algorithms in different clinical settings. On
the one hand, the availability of increasingly low-cost de-
vice, and considerable advances in artificial intelligence
algorithms have triggered the rapid development of ap-
plications for emotional recognition via brain waves. In
particular, EEG-based brain-computer interface (BCI) de-
vices have proved to be remarkably powerful tools for
brainwave acquisition, both due to their rapid deploy-
ment and their wide application in different scenarios
and contexts.

EEG signals are primarily used to diagnose and treat
various brain disorders, including epilepsy, tremor, con-
cussions, strokes, and sleep disorders. Machine learning
(ML) as an analysis method has been used in recent EEG
applications. ML Methods for automated EEG analysis
have attracted great interest, especially in clinical diag-
nostics. For example, ML enables the automation of the
process of EEG-based sleep stages [1] and neurological
diagnosis of specific diseases such as Alzheimer’s dis-
ease [2], autism spectrum disorders [3], depression [4], or
general EEG pathology[5, 6]. Several factors contribute
to the interest in automatic clinical EEG diagnosis. Ac-
cording to physiological studies, the cerebral cortex is
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the primary controller of humans’ higher emotional cog-
nitive capabilities. Hence, it would be advantageous to
identify brain areas that are strongly associated with
emotions using EEG-based emotion detection, mainly in
clinical trials for neuromotor rehabilitation or psycholog-
ical therapies.

2. Modeling the emotions
Basically, two techniques have been used to describe emo-
tions: the discrete emotion model and the dimensional
emotion model. Dimensional models classify emotions
on the scale or dimensions, while individual emotional
models include multiple major emotions and have two
types of emotion: Positive and Negative Emotions. Sev-
eral theorists have conducted experiments to identify
basic emotions and offered a number of models which
can be distinguished from one another.

The most common use is for Russell’s 2D emotion
model [7]. As is clearly shown in Figure 1, the vertical
axis represents arousal dimension and expresses intensity
of experience ranging from low to excitement, while the
horizontal axis shows valence dimension representing
the degree of joy or happiness between negative and
positive. In the arousal-valence coordinate system, there
are four categories of emotions. On the left hand side of
the diagram, negative emotions are visible and positive
emotions are shown to the right. The valence axis is
represented by positive and negative emotions, while the
arousal axis varies from inactive to active emotion. The
three-dimensional version of the model also includes the
dominance dimension which corresponds to the strength
of the emotion. In contrast to discrete representations,
dimensional models attempt to describe emotions using
continuous values of their defining properties, which are
frequently represented on axes [8].
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Figure 1: Representation of the Russel’s Emotion Model

3. The Role of Machine Learning
The design of a machine learning emotion recognition
model requires the careful planning of several steps, i.e.,
collecting EEG data, preprocessing phase, retrieving fea-
tures, choosing or reducing them, and classifying emo-
tions. The selection of the best classification tool which
is capable of accurately classifying individual emotions
has been one of the most important elements in devel-
oping an effective emotion classification system. Most
existing techniques consider emotion recognition as a
problem of classification and attempt to identify between
category emotions or across different areas in Russell’s
2D emotional model. Several ML models have been devel-
oped in recent years to handle the categorization of EEG
data for human emotion identification. Among these ap-
proaches are the commonly used classification methods
Support Vector Machines (SVM), Nave Bayes (NB), k-
nearest neighbour (K-NN), Decision Trees (DT), Random
Forest (RF), and Artificial Neural Networks (ANN) [9].

Although most works in the literature contribute more
to the classification of emotions than to the regression
of emotional dimensions, the regression approach aim-
ing to predict continuous values in the emotional plane
could be suggested in clinical contexts where it is im-
portant to track the evolution of a patient’s emotional
state during treatment. Deep learning (DL) techniques,
such as autoencoder, deep belief network (DBN), convo-
lutional neural network, and recurrent neural networks,
have been extensively used to build emotion recognition
architectures that outperform other standard machine
learning approaches [10]. Moreover, deep neural net-
works offer the benefit of dealing directly with raw data
and automating feature extraction and selection via high-
level data representation.

One disadvantage of DL approaches, however, is their
lack of interpretability. Understanding how the models
affect the decisions and how each predictive variable is in-

volved in the decision-making process for each instance
is essential both to increase the degree of confidence in
the models and to correct and act in case of bias and erro-
neous decisions [11]. Explainable Artificial Intelligence
(XAI) methods have been recently introduced to over-
come these limitations. In particular, local post-hoc tech-
niques such as LIME [12] and SHAP [13] have gained
popularity due to their ability to provide agnostic expla-
nations for the decisions of most ML and DL algorithms
at the local level.

In this work, we extend a prototype of an EEG-based
emotion recognition system that can detect the user’s
emotional state using a deep learning model embedded
into an interpretable framework to analyze the decisions
of the model and the contributions of the features selected
to describe the emotional state.

4. Materials

4.1. Dataset Description
The Dreamer dataset consists of 23 users’ EEG signals
during emotional elicitation. The emotional elicitation
protocol was performed using audio/video clips. Eigh-
teen video clips were used and classified into nine ba-
sic emotions such as amusement, excitement, happiness,
calmness, anger, disgust, fear, sadness, and surprise. Each
user was required to watch all video clips ranging from
65 to 393 seconds. After each video clip ended, users pro-
vided a self-assessment based on a 5-point Likert scale for
Valence, Arousal, and Dominance. To carry out this task,
participants were asked to complete the Self-Assessment
Manikin questionnaire at the end of each experiment [14].
Recordings without emotional elicitation (baseline) and
recordings during emotion induction were collected in
the data set. At the end of the study, the authors pub-
lished the dataset in Matlab format 1.

5. Methods

5.1. Preprocessing approach
One of the significant problems with EEG signals is the
strong presence of artifacts (noise) or faulty EEG chan-
nels that can impair data analysis. An essential aspect
of our study was automated preprocessing to create a
user-friendly routine for acquiring real-time EEG signals.
The preprocessing flow is critical because our prototype
aims to provide a real-time detection system of the user’s
emotional state. Our Preprocessing approach is also ap-
plied to the Dreamer dataset for training deep learning
models. Afterward, we checked the efficiency of the auto-
matic preprocessing technique by visually inspecting all

1https://it.mathworks.com/products/matlab.html



EEG trials. More specifically 414 samples were selected
containing information related to Valence, Arousal, and
Dominance values. The first pre-processing step was
the removal of the DC offset (DC offset). Then the data
format conformed to the MNE framework respecting the
10-20 standard. A notch filter calibrated to the cutoff
frequency of 50hz was used to remove noise due to the
commercial electric current. The trial was normalized
in the frequency range 1-40Hz. Epochs of length equal
to 1 second were created from the continuous EEG sig-
nal. independent component analysis (ICA), was used
to remove all noisy epochs and for the identification of
EEG signal components. All artifacts in the signal were
correctly removed. identification and interpolation of
defective channels and epochs were performed using the
pyprep framework 2. However, epochs exceeding a cer-
tain noise threshold are removed and not interpolated.
Finally, the continuous EEG signal is reconstructed by
merging all the various preprocessed epochs.

5.2. Training dataset
After obtaining the preprocessed EEG signal, the data set
is structured as follows: (i) 4 seconds epochs are extracted
from continuous EEG trial; (ii) Overlapp epochs are ob-
tained every 1280 samples. The new generated epochs
have the same label as the originals; (iii) Theta, Alpha,
Beta1, Beta2, Beta3 bands are extracted with neurokit2
framework3. The band range considered are 4-8Hz in
Theta, 8-13Hz in Alpha, 13-16 Hz in Beta1, 16-20Hz in
Beta2, 20-30Hz in Beta3.

5.3. DL Model Description
All the obtained features were initially split into train,
validation, and test with the sklearn train_test_split li-
brary in proportion 80% for training and the remaining
20% for testing. The training dataset was then split into
75% for train and 25% for validation. After this opera-
tion, the normalization was performed with the MinMax
scaler of sklearn [15]. The model used to make regression
predictions is a 1D convolutional neural network (CNN)
because it is useful in order to predict vectors of features
at one size. The reference frameworks for the model are
Keras [16] and Tensorflow [17]. The model consists of
three convolutional layers, of which two to 128 neurons
and a last to 64 neurons. A BatchNormalization was per-
formed at the end of the first two layers of filters. Each
layer was then condensed with the MaxPooling-1D in or-
der to extract the most relevant correlation of engineered
features. The kernel size is kept at 3, and the activation
functions are Relu for convolutional layers. At the end of
the convolutional layers, a Flatten operation is performed

2https://pypi.org/project/pyprep/0.2.1/
3https://neurokit2.readthedocs.io/en/latest/

to create the input arrays for the next neural network.
The neural network useful in order to predict regression
values is a Fully Connected Layer composed of four lay-
ers, one of which is 128 neurons input, a second hidden at
128 neurons, and a third hidden layer at 32 neurons. The
activation functions are relatively Tanh for the first two
layers and Relu for the 32-neuron layer. Then a Dropout
operation of 0.2 was performed in order to regularize
learning to avoid overfitting. Finally, there is the last
three neurons’ output layer with linear output function
useful for the purpose of the regression task. The three
classes we want to predict are Valence, Arousal, and Dom-
inance. During the learning, the mean_absolute_error
was monitored as a loss function, and a callback was
set to stop learning if the loss did not improve after ten
iterations. (Patience = 10). The optimizer chosen is the
Adam algorithm [18]. The structure of the network is
presented in Fig. 2.

The main aim of our study is to provide an emotion
recognition system that can provide real-time feedback
on the user’s emotional condition. In order to achieve this
goal, the minimum length in terms of seconds was sought
in relation to the greater level of accuracy of the R2 met-
ric. In practice, the minimum time that maintains the
levels of accuracy above 0.9% of R2 was sought, achieving
periods not less than 4 seconds. In the same way, the opti-
mal overlap coefficient was chosen to maintain the value
of the metric R2 not less than 0.9%. This optimization of
the hyperparameters was carried out experimentally to
directly find the best solution that could avoid consider-
ing the eras of the EEG signal not too long but neither
too short. Assuming to use epochs of 1-second length,
or 128 samples, is not representative of an emotional
state. Increasing the length of the epoch, the value R2 in-
creases, but consequently, it creates a problem relative to
the time of scan of the signal EEG during the acquisition
in real-time.

5.4. Interpretable model
The SHAP algorithm has been selected to explain the
predictions of the DL model for the independent test
set. SHAP represents the marginal contribution of each
input variable in the model’s decision-making process.
This algorithm is based on game theory and in particular
Shapley’s approach for evaluating the contribution of
each player in a cooperative game. SHAP introduces a
variant of Shapley’s approach through the use of a local
contribution function, which calculates the contribution
of each variable for each input instance of the test set.

For each output variable, we provide a waterfall plot
in SHAP representing the contribution of each feature
towards the final output of the DL model for a particular
instance of data. The plot shows the base value, which
is the expected output of the model when no features



Figure 2: Architecture of CNN-1D.

are observed, and the sum of the contributions of each
feature to the final output for the given instance of data.
Each feature is represented as a horizontal bar, and the
length of the bar represents the magnitude of its contri-
bution. Features that increase the output are shown in
blue, while those that decrease the output are shown in
red. The plot shows how each feature contributes to the
final prediction, highlighting which features are driving
the model for the given instance of data.

6. Results and Discussion
The DL model achieves the following levels of predic-
tive accuracy: 𝑅2 = 0.93, Mean Absolute Error = 0.08,
Mean Absolute Percent Error = 0.07. All metrics are
calculated with sklearn.metrics. Fig. 3 shows the course

Figure 3: Loss – Mean Absolute Percent Error.

of the function of loss during the learning phase. It can be
observed that no overfitting occurs during the training of
the model. The proposed architecture has been trained to
predict valence, arousal, and dominance levels simultane-
ously, thus classifying human emotions dynamically over
time. From this point of view the model could be used to
track the emotional history of a subject in real-time.

The waterfall plots for each outcome shown in Figure
4 suggest that the selected features for the four channels
have comparable impacts for all test samples, except for
the feature AF3 Beta 3, whose impact is higher than
the others for the predictions of the three outputs. This
finding encourages further exploration of the impact of
frequency features in the 20-30 Hz band and the use of
frontal electrodes for human emotion recognition.

7. Conclusion
The proposed DL model for the three-dimensional re-
gression of valence, arousal and dominance, constitutes



a prototype for the continuous tracking of human emo-
tional states and for explaining the impact of spatial and
frequency features. It could provide effective informa-
tion in clinical settings and be used as a tool to support
diagnosis. Future developments include training with
larger populations and the use of non-linear and complex
features to complement the frequency features used in
this work.

Acknowledgments
This work was partial support of the projects: Italian
P.O. Puglia FESR 2014 – 2020 (project code 6ESURE5)
‘SECURE SAFE APULIA’, Fincons CdP3, PASSPARTOUT,
Servizi Locali 2.0, ERP4.0. Also this work has been car-
ried out while Tommaso Colafiglio was enrolled in the
Italian National Doctorate on Artificial Intelligence run
by Sapienza University of Rome in collaboration with
Politecnico di Bari.

References
[1] S. Biswal, J. Kulas, H. Sun, B. Goparaju, M. B. West-

over, M. T. Bianchi, J. Sun, Sleepnet: automated
sleep staging system via deep learning, arXiv
preprint arXiv:1707.08262 (2017).

[2] L. R. Gianotti, G. Künig, D. Lehmann, P. L. Faber,
R. D. Pascual-Marqui, K. Kochi, U. Schreiter-Gasser,
Correlation between disease severity and brain elec-
tric loreta tomography in alzheimer’s disease, Clin-
ical Neurophysiology 118 (2007) 186–196.

[3] L. Billeci, F. Sicca, K. Maharatna, F. Apicella,
A. Narzisi, G. Campatelli, S. Calderoni, G. Pioggia,
F. Muratori, On the application of quantitative eeg
for characterizing autistic brain: a systematic re-
view, Frontiers in human neuroscience 7 (2013)
442.

[4] X. Li, B. Hu, S. Sun, H. Cai, Eeg-based mild depres-
sive detection using feature selection methods and
classifiers, Computer methods and programs in
biomedicine 136 (2016) 151–161.

[5] Y. Roy, H. Banville, I. Albuquerque, A. Gramfort,
T. H. Falk, J. Faubert, Deep learning-based elec-
troencephalography analysis: a systematic review,
Journal of neural engineering 16 (2019) 051001.

[6] S. U. Amin, M. Alsulaiman, G. Muhammad, M. A.
Bencherif, M. S. Hossain, Multilevel weighted fea-
ture fusion using convolutional neural networks
for eeg motor imagery classification, Ieee Access 7
(2019) 18940–18950.

[7] J. A. Russell, A circumplex model of affect., Journal
of personality and social psychology 39 (1980) 1161.

[8] H. Gunes, B. Schuller, Categorical and dimensional
affect analysis in continuous input: Current trends

and future directions, Image and Vision Computing
31 (2013) 120–136.

[9] E. H. Houssein, A. Hammad, A. A. Ali, Human emo-
tion recognition from eeg-based brain–computer
interface using machine learning: a comprehensive
review, Neural Computing and Applications 34
(2022) 12527–12557.

[10] C. Ardito, I. Bortone, T. Colafiglio, T. Di Noia,
E. Di Sciascio, D. Lofù, F. Narducci, R. Sardone,
P. Sorino, Brain computer interface: Deep learning
approach to predict human emotion recognition,
in: 2022 IEEE International Conference on Systems,
Man, and Cybernetics (SMC), IEEE, 2022, pp. 2689–
2694.

[11] A. Lombardi, D. Diacono, N. Amoroso, A. Monaco,
J. M. R. Tavares, R. Bellotti, S. Tangaro, Explainable
deep learning for personalized age prediction with
brain morphology, Frontiers in neuroscience (2021)
578.

[12] M. T. Ribeiro, S. Singh, C. Guestrin, " why should i
trust you?" explaining the predictions of any clas-
sifier, in: Proceedings of the 22nd ACM SIGKDD
international conference on knowledge discovery
and data mining, 2016, pp. 1135–1144.

[13] S. M. Lundberg, S.-I. Lee, A unified approach to
interpreting model predictions, Advances in neural
information processing systems 30 (2017).

[14] M. M. Bradley, P. J. Lang, Measuring emotion: the
self-assessment manikin and the semantic differen-
tial, Journal of behavior therapy and experimental
psychiatry 25 (1994) 49–59.

[15] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, E. Duch-
esnay, Scikit-learn: Machine learning in Python,
Journal of Machine Learning Research 12 (2011)
2825–2830.

[16] F. Chollet, et al., Keras, 2015. URL: https://github.
com/fchollet/keras.

[17] M. Abadi, A. Agarwal, P. Barham, E. Brevdo,
Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean,
M. Devin, S. Ghemawat, I. Goodfellow, A. Harp,
G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga,
S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,
B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Van-
houcke, V. Vasudevan, F. Viégas, O. Vinyals, P. War-
den, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng,
TensorFlow: Large-scale machine learning on het-
erogeneous systems, 2015. Software available from
tensorflow.org.

[18] D. P. Kingma, J. Ba, Adam: A method for stochas-
tic optimization, arXiv preprint arXiv:1412.6980
(2014).

https://github.com/fchollet/keras
https://github.com/fchollet/keras


(a) Waterfall Plot Valence. (b) Waterfall Plot Arousal.

(c) Waterfall Plot Dominance.

Figure 4: Representation of shapley values for each emotion under study
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