

AIMH Lab for Sustainable Bio-Inspired AI

<u>G. Lagani</u>, F. Falchi, C. Gennaro, G. Amato ISTI-CNR, Pisa

Ital-IA 2023

- Introduction and motivation
- Bio-inspired cultured neural networks for AI
- Hebbian plasticity models for Deep Learning
- Conclusions and future perspectives

Introduction and Motivation

- Deep Neural Networks (DNN) achieve outstanding results thanks to **backprop** training
 - Neuroscientifically implausible
 - Very high energy cost
- Plasticity in biological neurons is better explained by Hebbian and Spiking models
 - Energy efficient
 - Data efficient
- <u>Goal</u>: apply **bio-inspired** models to deep learning problems
- Related work: biologically **plausible** learning solutions
 - Surrogate gradients
 - **REINFORCE**
 - Contrastive Hebbian Learning, Predictive Coding
 - Signal propagation, Forward-Forward
 - Feedback Alignment, TargetProp

Cultured Networks on MEAs for AI

- Cultures of biological neurons can be developed *in vitro*
- Interfaces for stimulation/recording
 - Multi-Electrode Arrays (MEAs)
 - Light/optogenetics (preliminary)
- Goal: use <u>biological networks for AI tasks</u>
- **Software simulation** can guide the design process
 - \rightarrow Spiking Neural Network (SNN) models

Real-world experiment from Ruaro et al. 2005

Digital twin

Parameter	Value	
Resting membrane potential	-70 mV	
Threshold membrane potential	-50 mV	
Reset membrane potential	-70 mV	
Refractory period	$5 \mathrm{ms}$	
Membrane potential decay time	50 ms	
STDP trace decay time	$\tau_+ = \tau = 20ms$	
Learning rate	$A_{+} = 10^{-2}, A_{-} = 10^{-4}$	
EXC_STRENGTH	1	
INH_STRENGTH	10	
σ_E	1.2 mm	
σ_I	0.15 mm	
Electrode stimulation range	0.3mm	

Ruaro et al. 2005, "Toward the neurocomputer: image processing and pattern recognition with neuronal cultures", in *IEEE Transactions in Biomedical Engineering*

Using Digital Twin for Digit Recognition

- 0-1 digits from **MNIST** are shown on the left 6x6 part of the grid
- Label signal given on the right
- **STDP** reinforces correlation
- The culture from the previous experiment achieves **88% accuracy** on this task
- Further tuning of design parameter allows to achieve 95% accuracy
- The simulator can guide the creation of real-world cultures for AI

Lagani et al. 2021, "Assessing Pattern Recognition Performance of Neuronal Cultures through Accurate Simulation". In 2021 10th International IEEE/EMBS Conference on Neural Engineering (NER) (pp. 726-729). IEEE.

Sample Efficiency and Semi-Sup. Learning

Semi-supervised learning:

- <u>Unsupervised pre-training</u>
- Pseudo-labels/consistency methods

Lagani et al. 2021. "Evaluating Hebbian Learning in a Semi-supervised Setting". In International Conference on Machine Learning, Optimization, and Data Science (pp. 365-379). Springer, Cham. Lagani et al. 2021. "Hebbian semi-supervised learning in a sample efficiency setting". Neural Networks, 143, 719-731.

AIMH Lab for Sustainable Bio-Inspired AI

Semi-Supervised Hebbian Learning for DNNs

- Hebbian unsupervised pre-training applied to deep
 CNNs
 - Soft-Winner-Takes-All (SWTA)
 - Hebbian Principal Component Analysis (HPCA)
- End-to-end fine-tuning by SGD
- Experiments on CIFAR10, CIFAR100, Tiny ImageNet, **ImageNet**
- Compared to VAE pre-training
- In various **regimes** of sample efficiency

Lagani et al. 2021. "Training Convolutional Neural Networks with Competitive Hebbian Learning Approaches". In International Conference on Machine Learning, Optimization, and Data Science (pp. 25-40). Springer, Cham.

Lagani et al. 2022. "Comparing the performance of Hebbian against backpropagation learning using convolutional neural networks". Neural Computing and Applications, 34(8), 6503, 6519.

AIMH Lab for Sustainable Bio-Inspired AI

Results

Regime	Method	CIFAR10	CIFAR100	Tiny ImageNet	ImageNet
1%	VAE	22.54	12.28	5.55	2.72
	SWTA	30.23	15.30	6.20	6.69
	HPCA	39.75	22.63	11.38	8.65
2%	VAE	26.78	15.25	6.74	6.14
	SWTA	36.59	20.76	8.56	11.52
	HPCA	45.51	30.83	15.71	13.64
3%	VAE	29.00	16.44	7.74	15.35
	SWTA	41.54	23.69	10.26	15.67
	HPCA	48.80	35.04	18.23	17.28
4%	VAE	31.15	17.89	8.45	23.97
	SWTA	45.31	26.91	11.52	19.95
	HPCA	51.28	38.89	20.55	20.39
5%	VAE	32.75	18.48	9.29	29.04
	SWTA	48.35	29.57	12.55	24.87
	HPCA	52.20	41.42	22.46	23.28
10%	VAE	45.67	23.80	13.51	43.73
	SWTA	58.00	38.26	16.70	41.54
	HPCA	57.35	48.93	28.13	34.27
25%	VAE	68.70	52.59	37.89	61.33
	SWTA	69.85	56.26	24.96	59.34
	HPCA	64.77	58.70	37.10	56.92
100%	VAE	85.23	79.97	60.23	76.84
	SWTA	85.37	79.80	54.94	76.10
	HPCA	84.38	74.42	53.96	77.28

Lagani et al. 2022. "FastHebb: Scaling Hebbian Training of Deep Neural Networks to ImageNet Level". In Similarity Search and Applications: 15th International Conference, SISAP 2022 (pp. 251-264). Springer, Cham.

Conclusions and Future Perspectives

- Hebbian alone is still far from supervised backprop
 - Alternative feature extraction strategies can be explored (Independent Component Analysis, Sparse Coding, etc.)
 - Tighter integration of supervision with Hebbian algorithms (e.g. Forward-Forward)
 - Top-down connections enable backprop approximations with Hebbian updates
 - The brain could orchestrate different strategies
- Extension to other **architectures** and **tasks** is non-trivial
 - Residual networks
 - Attention-based architectures/transformers
- Extension of Hebbian approaches to SNNs

Thank you!

