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Deep models scale and training cost
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Deploying models
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Inferences are performed remotely.

Edge Al
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Inferences are performed locally.
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Advantages of Edge Al
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Efficient deployment: Neural
Network Pruning
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Solution for efficient deployment

Neural Network Pruning
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Neural Network Pruning

INntuition

before pruning after pruning

pruning
Removes less influential elements while synapses

preserving the generalization capabilities.

Reduces the resources required to use the

pruning
model. ==

neurons

Studied since the late ‘80s has seen a
resurgence in 2015.
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Categorization of Pruning Procedures

One-shot vs. Iterative

Performs a single pruning step.

[ Tryiitng ]_,[ Braning ]_,[ Minesturiing ] Fine-tuning to recover performance.
Faster procedure.

One-Shot

Performs multiple pruning step.

[ Training | | —— | }‘ R J Successive training and pruning steps.
Prunes more parameters.

lterative
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Categorization of Pruning Procedures

Unstructured vs. Structured

Unstructured Structured
Removes many parameters from the network. Removes entire neurons in the network.
Highly reduces the compressed model size. Reduces the number of operations.

A round-trip journey in pruned artificial neural networks



TAAY

Categorization of Pruning Procedures

Unstructured vs. Structured

X Wa22 % w: X : = Y21 Y Y23 W21 | W22 | W23 | W24 X = x Y22 Y23
Unstructured Structured
No guarantee in removing neurons. Removes entire rows from the matrix.
We still consider the entire matrix to define the output The rank of the final matrix is lower.
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Learning Both Weights and Connections

A Template for Modern Techniques

Vanilla
training

Han et al,, Learning both weights and connections for efficient neural
network (2015).

Kick-started modern pruning research.

Prune
connections

Unstructured, iterative.

Acts as the foundation for the proposed procedures.
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Sensitivity Regularization

Standard Feed Forward Neural Network.

I
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Sensitivity Regularization

Standard Feed Forward Neural Network.

Our goal: assess to which extent changes
in the value of the weight w_ g would affect
the output Yu-

I
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Sensitivity Regularization

Standard Feed Forward Neural Network.
Our goal: assess to which extent changes
in the value of the weight w_ g would affect
the output Yu-

IN Intuitively:

e |Ifthechangein 'N is big, W has a
high Sensitivity. -
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Sensitivity Regularization

Standard Feed Forward Neural Network.

Our goal: assess to which extent changes
in the value of the weight w_ g would affect
the output Yu-

IN Intuitively:

e |Ifthechangein 'N is big, W has a
high Sensitivity. -
e Ifthechangeiny, issmall, w,

J. has a
low Sensitivity.
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Sensitivity Regularization
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Standard Feed Forward Neural Network.

Our goal: assess to which extent changes
in the value of the weight w_ g would affect
the output Yu-

Intuitively:

e |Ifthechangein 'N is big, W has a
high Sensitivity. -
e Ifthechangeiny, issmall, w,

J. has a
low Sensitivity.

Tartaglione et al,, Learning sparse neural networks via sensitivity-driven regularization (2018).



Our pruning techniques

LOBSTER

Contribution of the parameters to
the loss of the network.

oL

S(E' Wn,i,j) = aW L.
n,,j

Unstructured.

regularization:
networks."

"Loss-based sensitivity
towards deep sparse neural
Neural Networks (2022).
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SeReNe

Contribution of the neuron to the
output of the network

YN,k
aPn,/

Snl YN, Pn/ =

Structured.

"SeReNe: Sensitivity-based regularization of neurons for
structured sparsity in  neural networks" IEEE
Transactions on Neural Networks and Learning
Systems (202]).



ResNet-18 on ImageNet E|D°SL;&B
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Pruning in the MPEG-7 Part 17 pipeline

Experimental Setup

Simplification Entropy Coding Bit stream Decompression

Evaluate the benefits of structured pruning approaches
within the MPEG-7 Part 17 neural network compression pipeline.

"On the role of structured pruning for neural network compression." 2021 IEEE International Conference on Image Processing (2021).
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Pruning in the MPEG-7 Part 17 pipeline

Experimental Setup

ﬂx
[

MPEG-7 Part 17 standard
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Pruning in the MPEG-7 Part 17 pipeline

Experimental Setup

§> ;llll )

Simplification Entropy Coding Blt stream

ﬂx

Evaluation of pruned
models on mobile devices
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Pruning in the MPEG-7 Part 17 pipeline

Experimental Setup

g ) AN, =
Entropy Coding Bit stream Decompression

Parameter pruning:
SeReNe vs LOBSTER

A round-trip journey in pruned artificial neural networks



m
2
(o]

"

e

o |

Pruning in the MPEG-7 Part 17 pipeline

Experimental Setup
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Removal of pruned
neurons: Simplify
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Pruning in the MPEG-7 Part 17 pipeline

Evaluation Results

. . Pruning Simplified Compressed Inference time [ms]
Dataset Architecture Pruning
ratio [%] topology [MB] bitstream [MB] RPi3B P20 MI9 S6L
No pruning - 60.0 3.6 647 204 153 251
VGG-16 LOBSTER 92.44 58.61 1.61 610 191 146 242
CIFAR-10 -S(:R,cl\'c 47.16 31.02 0.34 594 99 85 106
No pruning - 2.0 0.30 580 32 30 31
ResNet-32 LOBSTER 81.19 1.96 0.12 545 32 26 30
SeReNe 52.80 1.0 0.09 536 25 17 25
No pruning - 94.6 10.1 246 131 84 168
CIFAR-100 AlexNet LOBSTER 98.90 48.84 0.40 224 95 67 120
SeReNe 59.87 37.07 0.20 186 75 53 96
No pruning - 1784 26.24 11919 958 416 1008
ImageNet ResNet-101 LOBSTER 87.39 173.87 9.24 11879 956 403 985
SeReNe 1.09 172.53 7.51 11699 929 371 974

Even removing less parameters, SeReNe produces smaller and faster models.
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Efficient training: Backward Pass
Pruning
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Reducing the Training Cost

We have seen how pruning can reduce the resources required by a
deployed model, but what about the training process?

It is true that a model will perform thousands of inferences but the
training IS still very expensive.

A round-trip journey in pruned artificial neural networks



TAAY

Reducing the Training Cost

The ldea
Backward pass
_ . .
Backpropagation is the more
computational-heavy part of
the training.

We can reduce the training cost

Input &= < Output by S|Immlng the
backpropagation.

How?

A round-trip journey in pruned artificial neural networks



TAAY

Reducing the Training Cost
The Idea

“Sparse” backward pass

Are there neurons that

“‘converge” before the end of
the training? If so, we could
disable their backpropagation.

Input G X?Q = Output How can we find these
® neurons?
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Reducing the Training Cost

Equilibrium evaluation

Forward pass (epoch t-1)

We evaluate a neuron’s state and disable
the update for neurons that reached

equilibrium.

Input (v) === ==) Output (Y

We consider the neuron’s output in 2
adjacent epochs and evaluate the
similarity.

vV M
t t t—1
¢n,i = Z Z Ynimv' yn,i,m,v
m=1

4

Forward pass (epoch t)

Input (v) === ==) Output (YY)
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Reducing the Training Cost

Equilibrium evaluation

Forward pass (epoch t-1)

To asses the convergence to equilibrium,
we evaluate the variation of similarities.

=) Output (YV)
t _ gt t—1
A(bn,i — ¥n,i (/bn,i

Input (v) ===

We say that we reach equilibrium when

Forward pass (epoch t)

Agl;—0

Input (v) == === Output (YY)
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To update or not to update? Neuron at equilibrium
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NEQ

Some Neurons may Unfreeze

x108 x108

1071 10-1
3 10 = 10 £
2107 0 ERURE 3
: -0.5 = 0.5 =
1073 , R 0.0 = v I . . -0_0:
0 100 200 0 100 200
Epochs Epochs
SGD Adam
In the first phase of the train (high learning rate and stochastic noise) the amount of the trained neurons is
higher.
Adam drives the neurons towards equilibrium faster.

At the first learning rate decay, for SGD, the number of updated neurons decreases and then increase, as SGD
looks for large minima, preventing equilibrium in high learning rate regimes. 55
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NEQ

Experiments

We evaluate our approach on different combinations The pruning performance is evaluated according to
of architecture and dataset: multiple metrics:

e Average FLOPs per iteration at backpropagation.
e ResNet-32 on CIFAR-10

e Final performance of the model evaluated on
e ResNet-18 on ImageNet the test set (classification accuracy or IoU).

e Swin-Bon Imagenet
e DeeplabV3 on COCO
All the learning policies used are borrowed from other

works and are un-optimized to test the adaptability of
NEq.
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Experiments

Dataset Model Approach Bprop. FLOPs per iteration Performance
Baseline 138.94M + 0.0M 92.85% + 0.23%"
Stochastic (p = 0.2) 112.99M + 0.00M (-18.68%) 92.78% + 0.19% (-0.07%)T
CIFAR-10 ResNet-32  Stochastic (p = 0.5) 69.75M + 0.00M (-49.8%) 91.88% =+ 0.27% (-0.97%)T
Stochastic™ _______86.34M + 0.00M (-37.85%) ___ 92.23% £ 0.25% (-0.62%)"
(Neq________ 84.8IM + 0.63M (-38.06%) __ 92.96% =+ 0.21% (+0.11%)’;
Baseline 3.64G = 0.0G 69.90% + 0.04%°1
Stochastic (p = 0.2) 2.94G + 0.00G (-19.26%) 69.42% =+ 0.16% (-0.48%)T
ResNet-18  Stochastic (p = 0.5) 1.85G + 0.00G (-49.11%) 69.18% + 0.03% (-0.72%)T
Stochastic™ 2.82G +£ 0.00G (-22.58%) _____ 69.45% £ 0.06% (-0.45%)"
fmsgeNet- 1K (Neq """""2.80G £ 0.03G (-23.08%) ___ 69.62% & 0.06% (-0.28%)" !
Baseline 30.28G =+ 0.00G 84.71% =+ 0.04% T
Stochastic (p = 0.2) 24.65G £ 0.00G (-18.6%) 84.54% + 0.04% (-0.83%)T
Swin-B Stochastic (p = 0.5) 16.15G £ 0.00G (-46.67%) 84.40% + 0.02% (-0.31%)T
Stochastic* 11.02G + 0.00G (-63.67%) 84.27% + 0.04% (—0.44%)T_
(Neg 10.78G + 002G (-6439%) ____ 84.35%+0.02% (-0.36%)" }
Baseline 305.06G £ 0.0G 67.71% + 0.02%*
Stochastic (p = 0.2) 248.69G £ 0.00G (-18.48%) 67.11% + 0.02% (-0.60%)*
COCO DeepLabv3  Stochastic (p = 0.5) 163.42G + 0.00G (-46.43%) 66.91% + 0.04% (-0.80%)*
Stochastic* 229.00G + 0.00G (-24.93%) 67.02% + 0.03% (-0.69%)*
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NEQ

Faster Backpropagation

1000 - Vv\,_./\/—\\/\/\\/\—v\,\/-/v\\/-/\ﬁzx—_/\/\/w_/\/—\ﬁ

900

£ o1 Backpropagation execution time
g for vanilla and NEg ResNet-18.

:

£ 600 We observe a reduction in the
= ol wall-clock time of around -17.52%.

w004 Vanilla
Neq
(I) 2I0 4I0 6'() 8'()
Epochs
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Conclusions
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Conclusions

e We shared our recent experiences in frugal deep learning
o one way. simplify the model via pruning for faster/lower
memory footprint when deploying nets
o return: prune the backward pass to reduce the training cost

=\
e]
=
Zz
o
-
2
©

e Future research
o joint approaches including quantization and target device
constraints
dataset pruning
o efficient automatic hyper-parameter tuning

AYM-INO
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