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Introduction

• Problem. An exponential increase of cyber attacks whose 
aim is to breach networked and softwarized environments

• Goal. Defining Artificial Intelligence (AI)-based solutions 
able to detect anomalous behaviors in such ecosystems
• e.g., a malware endowed with information-hiding capabilities, or 

evolving cyber threats



Covert Malware in IoT Scenarios

• Network covert channels, i.e., hidden communication paths 
nested within legitimate traffic flows 
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Covert Malware in IoT Scenarios

• Goal. Identifying the presence of network covert channels 
targeting the IPv4 protocol used in an IoT ecosystem

• Idea. Developing a covert channel detection method based 
on unsupervised deep learning models



Covert Malware Detection via 
Autoencoders
• In [1] we developed an autoencoder-based 

approach to detect covert channels
• Only legitimate traffic information has been 

given to the model to perform the training

• Results considering a channel within the 
TTL of IPv4 showcased the effectiveness 
of the proposed approach, i.e., we 
obtained ∼91% and ∼94% for the accuracy 
and the precision, respectively
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Ensembling Sparse Autoencoders for 
Network Covert Channel Detection
• [1] was extended to evaluate an 

incremental learning scheme based on 
an ensemble of autoencoders trained 
on disjointed data chunks [2]

[2] N. Cassavia, L. Caviglione, M. Guarascio, A. Liguori, M. Zuppelli, Ensembling Sparse Autoencoders for Network Covert Channel 
Detection in IoT Ecosystems, in: Foundations of Intelligent Systems: 26th International Symposium, Springer, 2022, pp. 209–218
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• The adoption of the ensemble strategy improves the performances 
compared to using a single autoencoder
• We obtained ∼95% both for the accuracy and the precision



Ensembling Sparse Autoencoders for 
Network Covert Channel Detection



Ensembling Sparse Autoencoders for 
Network Covert Channel Detection
Benefits

• Incremental learning allows to deploy the ensemble-based 
model on devices with limited computational storage resources
• e.g., in home gateways or edge nodes

Limits

• An ensemble-based model requires to set the ensemble size

• Training only against the data available on a single edge
• Data owners could be not inclined to share them 



Revealing Information Hiding through 
Federated Learning
• Federated Learning (FL) could be useful when information 

is stored in several data centers, and cannot be moved to 
learn a detection model in a centralized fashion
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Revealing Malicious Contents through 
Federated Learning
• In [3], we evaluated the benefits of FL-based approaches to 

detect malicious payloads hidden within high-resolution 
icons of mobile apps

• Results showcased the effectiveness of the approach
• Our FL solution achieves performances similar to a centralized 

approach without the necessity of moving data in a single node 

[3] N. Cassavia, L. Caviglione, M. Guarascio, A. Liguori, G. Surace, M. Zuppelli, Federated learning for the efficient detection of 
steganographic threats hidden in image icons, in: Pervasive Knowledge and Colletive Intelligence on Web and Social Media, 
Springer Nature Switzerland, Cham, 2023, pp. 83–9



Covert and Hidden Threats Detection

Open Challenges
• Lack of publicly-available datasets
• Class imbalance
• Real data are usually affected by noise
• Errors in classifying infrequent legit behaviors
• Threat-dependent models
• Definition of the boundary between normal and abnormal 

behaviors



Container Security
• Containerization facilitates the creation, the distribution and the 

deployment of applications in a lightweight, portable, and 
scalable manner

• Despite the various advantages, container security is not fully 
understood
• e.g., Docker images may contain vulnerable software or be susceptible to 

kernel-level vulnerabilities

• Threat actors are exploiting the “imperfect” isolation of 
containers to leak information or orchestrate attacks via covert 
channels, e.g., via the /proc filesystem



Container Security

• Container A and Container B can 
covertly communicate to exfiltrate 
information or orchestrate attacks 
(e.g., co-residency attacks)

• To do this, they manipulate a shared 
resource of the host leveraging its 
“imperfect” isolation, e.g., the CPU 
load has a global visibility

Shared Resource (e.g., /proc/meminfo)
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Container Security: Example

• For example:
• A sender process of a container can increase the used memory to 

alter the overall (host-level) free memory
• A receiver process of a receiving container can infer the secret 

message by inspecting the behavior of the overall memory

• A promising detection approach relies on AI. For example:
• it can search for anomalous “wake-sleep” patterns of processes
• it can be used to define the “normal” behavior of the containers
• it can be used to analyze network communications among 

containers to spot anomalous traffic 



Graph Generation

• Cyber attacks can be represented as dynamic graphs 
• e.g., network traffic for intrusion detection, flow of API calls for 

malware detection

• We plan to devise a deep learning-based approach aiming 
at predicting graph evolution

• Modeling and predicting the evolution of such graphs could 
be useful to identify polymorphic cyber attacks
• e.g., polymorphic malware



Graph Generation

Open Challenges
• Modeling graph evolution is a complex task due to the 

dynamic nature of the underlying process
• Continuous changes in the graph structure need flexible 

architecture 

• State-of-the-art systems lack flexibility
• It is crucial devising architectures that guarantee invariance w.r.t. 

the input size -- as the changes are not only on topology, but also 
on dimension



Conclusion

• We discussed the opportunities of using AI to detect emerging 
threat endowed with covert attacks, especially when targeting
realistic scenarios based on IoT or container technologies

• We investigated the main challenges in employing AI-based 
framework

• We described some preliminary results obtained by adopting
Deep Learning architectures



Thank you for your attention!


