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Abstract

The requirement of explainability is gaining more and more importance in Artificial Intelligence applications based on
Machine Learning techniques, especially in those contexts where critical decisions are entrusted to software systems (think,
for example, of financial and medical consultancy). In this paper, we propose an Argumentation-based methodology for
explaining the results predicted by Machine Learning models. Argumentation provides frameworks that can represent and
analyse logical relations between pieces of information to construct human-tailored rational explanations for a given problem.
In particular, we use extension-based semantics to find the rationale behind a class prediction.
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1. Introduction

The term Explainable Artificial Intelligence (XAI) refers
to the principle by which the operating procedures and
the results offered by intelligent computer systems are
made understandable to human users [1]. The black box
model used in Machine Learning (ML) is considered one
of the major problems in the application of Artificial Intel-
ligence (AI) techniques [2]: it makes machine decisions
non-transparent and often incomprehensible even to ex-
perts or developers themselves, which reduces trust in
ML and Al in general.

The need for explainability is exacerbated in critical
contexts where the decisions made directly impact peo-
ple’s lives (e.g., financial plans or disease treatments). Un-
derstanding the choices made by Al algorithms is there-
fore of fundamental importance, not only to increase
trust in Al but also to provide insights into the model
itself and to carry out debugging operations [3]. Another
reason for the strong interest in understanding the pro-
cesses behind ML algorithms is the increase in public
sensitivity towards privacy [4].

Among the various approaches to explanation, argu-
mentative models play a fundamental role in the litera-
ture relating to Al and the social sciences, given their di-
alectical nature, which allows linking applications to the
human beings who develop and use them [5]. Argumen-
tation in XAl is supported by the solid foundation and
flexibility provided by the wide variety of frameworks

Ital-IA 2023: 3rd National Conference on Artificial Intelligence, orga-
nized by CINI, May 29-31, 2023, Pisa, Italy

*Corresponding author.

Q stefano.bisterelli@unipg.it (S. Bistarelli);
alessio.mancinelli@unipg.it (A. Mancinelli);
francesco.santini@unipg.it (F. Santini); carlo.tatichi@unipg.it

(C. Taticchi)

@ 0000-0001-7411-9678 (S. Bistarelli); 0000-0002-3935-4696

(F. Santini); 0000-0003-1260-4672 (C. Taticchi)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License

Attribution 4.0 International (CC BY 4.0).

offered in the literature. For instance, Abstract Argumen-
tation Frameworks (AFs) [6] allow for specifying argu-
ments and dialectical relations between them; a different
paradigm can also be used to represent both conflict and
support relations [7]. Furthermore, AFs are also endowed
with semantics for evaluating arguments’ acceptability.
Therefore, there are two main advantages to using an ar-
gumentative approach for understanding the behaviour
of black box models. First, it allows for explanations that
can be assimilated and evaluated following the natural
declination of human reasoning. Indeed, arguing is a
primary means by which people reason about decisions
to be made in real life (we can argue both with others and
with ourselves), and Argumentation paradigms mimic
the human way of thinking. Then, regarding implemen-
tation aspects, many tools and formal models are pro-
vided by Computational Argumentation that are already
predisposed for automation and can therefore serve as
a basis for developing and providing new explanation
techniques [8].

This paper describes Arg-XAI [9, 10], a tool for the
argumentative interpretation of the training process and
the results predicted by Machine Learning models.

We take in input a dataset characterised by a certain
number of features, one of which represents the class of
the record, and we build a Bipolar Argumentation Frame-
work (BAF) [7] whose arguments consist of a subset of
selected features related to each other (with supports/at-
tacks) in accordance with their correlation value. We
then use Argumentation semantics to evaluate the ac-
ceptability of the arguments in the BAF: starting from
justified arguments, we can build an explanation tree
that shows motivations behind the attribution of a cer-
tain class to a given record. Our proposal aims to offer
explanations as reasoning processes, and since we make
assumptions neither on the dataset nor the algorithm
used, the procedure can be applied to existing models
without further adjustments.
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2. Preliminaries

Machine Learning is a branch of Artificial Intelligence de-
voted to automating analytical model building. In partic-
ular, ML offers techniques capable of making predictions
or decisions without explicitly writing an ad hoc pro-
gram. For example, an ML algorithm [11] can recognise
new and never seen samples by extracting patterns from
a given dataset and using them to approximate a func-
tion that generalises the data. There are three primary
ML approaches: supervised, unsupervised and reinforced
learning. This paper focuses on supervised learning, in
which the training data (a set of examples used to train
the model) contains both the input and the desired out-
puts. The model can thus be learned by optimising a
function that predicts the output associated with the new
input. Classification algorithms are supervised learning
algorithms that address the problem of associating each
input with the class it belongs to. The model able to
correctly classify an input is learned during the training
phase and consists of a function m : ' — C where F’
is the set of features (measurable properties of a record)
and C the possible classes.

On the other hand, Argumentation is an interdisci-
plinary field that aims to understand and model the natu-
ral human fashion of reasoning, allowing one to deal with
uncertainty in non-monotonic (defeasible) reasoning. It
gives a qualitative, logical evaluation of sets of interacting
arguments called extensions. An Abstract Argumenta-
tion Framework [6] is a pair (Arg, R) where Argis a set
of arguments and R is a binary attack relation on Arg.
For two arguments a,b € Arg, (a,b) € R represents
an attack from a directed to b. A generalisation of AFs
is provided by Bipolar Argumentation Frameworks [7],
which admit two different types of relations between
arguments: attack and support relations.

Given an AF, we are interested in establishing which
are the acceptable arguments according to a certain se-
mantics, namely a selection criterion. Non-accepted ar-
guments are rejected. Extension-based semantics (e.g.,
admissible, complete, stable, semi-stable, preferred, and
grounded) have been introduced [6, 12] that reflect quali-
ties which are likely to be desirable for “good” subsets of
arguments. In particular, the semi-stable semantics has
properties that make it suitable for constructing expla-
nations: it always exists (contrary, for example, to the
stable semantics, which may not admit any extension),
and it provides a solid justification for accepted argu-
ments since it expresses a definite opinion on the largest
possible set of arguments [12]. A labelling semantics [12]
can be used to increase expressiveness by assigning a la-
bel (between in, out and undec) to the arguments: an
argument is labelled ¢n if all its attackers are labelled out,
and it is labelled out if at least an ¢n node attacks it; in
all other cases, the argument is labelled undec.

3. Explanation Procedure

The proposed approach gives an argumentative interpre-
tation of the training phase and the answers provided
by machine learning models for classification. We start
from an input dataset composed of n records, each with
a number of features also including the class it belongs
to. The goal is to build a BAF showing the dialectical
reasoning behind the assignment of a certain class to a
given record. The used procedure consists of the follow-
ing tasks: Dataset Clustering, BAF Generation, Breaking
Symmetries, Attack and Support Closure and Explanation
Tree Construction.

3.1. Dataset Clustering

Starting from the input dataset, we create a new clus-
tered dataset in which numerical features are split into
categories that group ranges of values to obtain a more
appropriate and concise explanation. To improve effi-
ciency, we binarise categorical features: a new column is
generated in the clustered dataset for each possible cate-
gorical feature value. For instance, if the feature A can
take three values 0, 1 and 2, we add three new columns,
respectively for A=0, A=1and A=2. If in a certain record
of the original dataset, the feature A takes value 0, then
the corresponding record A=0 in the clustered dataset is
set to 1, while A=1 and A=2 are both set to 0.

Generating a new column for every possible value is
not feasible for numerical features. In this case, we use
a methodology based on entropy [13] to find the best
split. Following this approach, the data is partitioned
into subsets on which the class entropy (amount of in-
formation needed to specify the classes in the partition)
is computed. The best split is the one that minimizes
entropy.

3.2. BAF Generation

The BAF is generated starting from a subset of arguments
chosen from the list of features that will be used for the
explanation. To prevent arguments deriving from the
same feature from being in the same extension, we add
an attack with a weight equal to —1 between all the ar-
guments generated after the splitting of a feature. Then,
we compute the correlation matrix among the features
to determine what kind of relation (support or attack)
exists between the arguments. For this task we use rank
coeflicients as the Kendall [14], Pearson [15] and Spear-
man [16] ones. If the correlation value between two
arguments is negative, we add an attack between them; if
it is positive, we add a support relation. In both cases, the
weight of the relation is equal to the correlation value.
All the attacks and supports in such an assembled BAF
are symmetrical at this stage.



3.3. Breaking Symmetries

Given the correlation matrix, we apply a procedure that
removes symmetric edges from the BAF. Breaking the
symmetry of the obtained framework is crucial, as we
want to detect causality between arguments in the BAF.
Such a causal relation cannot be studied only relying on
the correlation matrix (which is symmetrical by construc-
tion); hence we consider the conditional probability [17]
between the features, which expresses how likely an
event is to happen given that another event has already
happened. This kind of probabilistic reasoning has al-
ready been successfully adopted in the literature (e.g.,
in a paper by Timmer et al. [18]) to extract probabilis-
tically supported arguments from a Bayesian network.
Given two features A and B, we consider the condi-
tional probability of A given B (written P(A|B)) and
the conditional probability of B given A (P(B|A)). If
P(A|B) > P(B|A), then the (attack or support) rela-
tion from B to A is removed since A is more probable to
happen. In practice, we also consider a threshold not to
remove features with similar conditional probabilities. In
the opposite case, when P(B|A) > P(A|B), we would
have removed the relation from A to B. Note that we
only remove relations between arguments that do not
come from the same feature. Indeed, we do not want
to remove the symmetrical attack with weight —1 we
added in the previous step between arguments obtained
through a split.

3.4. Attack and Support Closure

We translate the considered BAF into a classical AF with
attack relations only to obtain the list of semi-stable ex-
tensions and compute their probability of being admis-
sible. Indeed a tool for computing such a probability
directly on BAFs is not currently available in the liter-
ature. The translation phase begins with the support
relations closure: given three arguments A, B and C, if
supp(A, B) = x and supp(B, C') = y, we add a support
relation from A to C such that supp(A, C) = z *y. The
next step is the attack relations closure. First, we look for
triples of arguments A, B and C' with supp(A, B) = z
and att(B, C) = y, and we add an attack relation from A
to C such that att(A, C') = x*y. Then, for all arguments
A, B and C with att(A, B) = z and supp(C, B) =y,
we add an attack att(C, A) = —y. At this point, we
delete all the support relations from the modified BAF,
thus obtaining a classical AF [19].

3.5. Explanation Tree Construction

We are now able to compute the set of acceptable argu-
ments. The choice of the semantics falls on the semi-
stable one for the reasons mentioned in Section 2. In

our BAF, each relation between two features A and B is
endowed with a probability corresponding to the value
in the correlation matrix between A and B. Such prob-
ability represents uncertainty over the topology of the
graph. We use the constellation approach [20] to com-
pute the probability of a set of arguments to be a semi-
stable extension: this gives an idea of the plausibility of
each possible explanation. Due to computational issues,
we use a workaround to decrease the complexity of the
operation (see Section 4 for implementation details).
Finally, we build the explanation tree. We show an
example in Figure 1, in which the root node A represents
the attribution of the class we want to explain. We can
add to the tree nodes that attack/support the root: the
explanation can be produced by showing features that
either support the class attribution or are against it or
both. In Figure 1, the root has a supporting feature B,
which must be an accepted argument belonging to an
extension found in the previous step. Argument C, in-
stead, is attacking A and must be defeated by another
argument supporting the root (D in our case).

Figure 1: Example of explanation tree for the argument A.

4. Experiments and Validation

To validate the proposed approach, we use the “Titanic”
dataset' containing records about people involved in the
Titanic disaster (see Table 1 for the list of features).

Table 1

Titanic dataset features.
Feature Values Description
Pclass 1,2,3 Ticket class
sex 0,1 passenger gender
SibSp 0-8 # of siblings/spouses
Parch 0—6 # of parents/children
Embarked: C,Q,S port of embarkation
Survived: 0,1 passenger survival
Age 0.17 — 76  passenger age
Fare 0—512 passenger fare

The class to predict is Survived, which determines
whether a person survived the disaster (value 1) or not
(value 0). In this example, we want to find an expla-
nation for the class Survived=1. First, we compute the

IThe Titanic dataset is taken from https://www.kaggle.com.
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correlation matrix for the selected features and obtain
a BAF with only symmetrical relations. The symmetry
is broken through the conditional probability computed
for arguments which attack/support each other. When
the difference in conditional probability is minimal, how-
ever, we want to maintain both relations because there
is not enough confidence in determining which feature
implies the other. Hence we specify a correlation thresh-
old which must be reached in order to remove one of the
two symmetrical relations. If not, both relations remain
in the BAF.

To help the user choose the correct correlation thresh-
old, we implemented a procedure that finds the minimum
values that guarantee the graph to remain connected (in
fact, we want the explanation dependent on all the se-
lected features). In this example, we use a correlation
threshold of 0.17. A percentage threshold is also used
to manipulate the number of attacks and supports to re-
move. Let m and n be the number of records with A =1
and B = 1, respectively. With a threshold of 2%, the
relation from B to A is removed only if the condition
Too > m is satisfied. We choose the minimum values
possible that keep the graph connected, which is, in this
case, a removal percentage of 30%.

Suppose to have the following data:

« Number of records set to 1 for the feature A: 507
« Number of records set to 1 for the feature B: 117
« Relation removal percentage: 30%

We first compute 30% of 507, that is 152. Since 152 >
117, the relation from B to A is removed. We obtain a
BAF with 26 arguments and 179 relations (131 attacks
and 48 supports) within a single connected component.
The “main” argument visualised at the top of the BAF
represents the assignment of the class Survived=1.

To identify the set of arguments more likely to be
accepted, we compute the semi-stable extensions through
the ConArg solver” and then use the tool described in [21]
to find, for each semi-stable extension, its probability of
being admissible. Since we cannot compute classical
semantics directly on a BAF, we first translate it into an
AF by applying the transitive closure and the removal of
supports of Section 3.4, obtaining an AF with 265 attack
relations. We can then compute the set of semi-stable
extensions and, for each of them, the probability of being
admissible.

For example, Extension (1) is a semi-stable extension of
the generated AF, which is also an admissible extension
with probability 1 (the highest possible) and contains the
argument Survived=1.

Fare>10.4812, Age<0.96, Survived=1,

Embarked=C, Sex=0, Parch=1, SibSp=1, Pclass=1 @

2ConArg website: https://conarg.dmi.unipg.it.

Extension (1) represents a good explanation of why the
individual survives since, being semi-stable, it provides
the maximal number of arguments justifying the class
Survived=1. Finally, starting from arguments of the se-
lected extension, we produce the explanation tree of Fig-
ure 2, where accepted arguments are labelled ¢n and
highlighted in green, while rejected ones are labelled out
and highlighted in red. Possible undec arguments (not
present in our example) would have been removed as
they are not helpful in the explanation. Note that argu-
ment Age<0.96 is not used in Figure 2 since it is not in
the same connected component as Survived=1.

E‘c '

Figure 2: An explanation tree for the class Survived=1 of the
Titanic dataset. To enhance the presentation, weights on edges
are not displayed.

Looking at the obtained explanation, we can conclude,
for instance, that the person in question survived because
“she is a woman (Sex=0), with a paid ticket (Fare>10.4812)
and travelling first class (Pclass=1)". Indeed, arguments
representing those features in Figure 2 attack other ar-
guments that are against the assignment of the class
Survived=1, standing in turn for being male (Sex=1) and
having a third-class ticket (Pclass=3) with a low fare
(Fare<10.4812). From Figure 2, we could also assume
that most of the first class passengers boarded from Cher-
bourg (Embarked=C), indeed argument Embarked=C sup-
ports Pclass=1.

To validate the proposed explanation technique, we
conducted experiments using decision trees [22] and
LIME [23].

4.1. Validation via Decision Tree

Decision trees represent a classification technique that
involves walking a tree from the root to its leaves. A
learning algorithm decides the shape of the tree and as-
signs splitting features to individual nodes. If the test on
anode is true, then we move to the left branch, otherwise
to the right. Given a certain record, we follow the path
from the root to a leaf node corresponding to the assigned
class. Since we want to minimise the number of argu-
ments used for the explanation, we use entropy to split
the numerical features. It follows that our split will not
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exactly coincide with the numerical range found by the
decision tree. The trees are built using grid search [24],
which consists of performing an exhaustive search of op-
timised parameters (in a selected range). The classifier’s
performance is evaluated for each combination of param-
eters, making this process expensive in computational
terms but able to guarantee good results. We want to
check whether arguments corresponding to the leaves
of the decision tree (that is, the assigned classes) belong
to a semi-stable extension. For example, if the class Sur-
vived = 11is a leaf in the decision tree, then we expect the
argument corresponding to that class to be accepted in
our BAF with respect to the semi-stable semantics.

To validate the explanation provided by Extension (1),
we refer to the decision tree of Figure 3 trained on the
Titanic dataset. Starting from the root, we proceed to the
left subtree since the feature sex is set to 0 in Extension (1).
Then we check the feature Pclass, which has value 1 in our
extension, and we proceed again to the left branch. The
last feature to analyse is Fare and, regardless of whether
or not the split condition occurs, the class in the leaves
is Survived = 1, which also belongs to the extension.

Sex <0
Pclass <2.5
Fare < 7.888

‘ Survived = 1 Survived = 1 Survived = 0

Figure 3: Left branch of the decision tree model trained on
the original Titanic dataset.

4.2. Validation via LIME

The LIME algorithm is used for explaining the predictions
of any classifier by approximating it with a model that
can be easily interpreted. LIME generates new records
using small variations of the instance taken as input.
On this new dataset, LIME trains an interpretable model
(logistic regression in our case). The new records are then
labelled using the original classifier, and the similarity
distance between the original predictions and the new
ones is computed to explain the local behaviour of the
analysed black box.

Taking into account the Titanic dataset, consider first
a record consisting of the following features: Pclass=1,
Age=24, SibSp=1, Parch=1, Fare=100, Sex=0 and Em-
barked=C. The explanation provided by LIME for pas-
senger survival (Survived=1) is shown in Figure 4. We
can see that the most relevant features, i.e., Sex=0 and
Pclass=1, are also arguments belonging to Extension (1).

Survived =0

Sex <= 0.00
0.44
Pclass <=1.00
0.14
Embarked=C > 0.00
0.04
22.00 < Age <=29.53
0.04H
Parch > 0.00
0.03
Embarked=S <= 0.00
0.02
Embarked=Q <= 0.00
0.02
0.00 < SibSp <= 1.00)
0.01
Fare > 71.21
0.00]

Figure 4: A LIME explanation for the class Survived=1.

5. Web Interface

This section describes the web interface’ we developed
to facilitate the use of the proposed method. The user is
first required to specify a dataset to be analysed. Clicking
on the “Load Dataset” button, all the features contained
in the dataset are presented in a multiple-choice select to
enable specifying the class to justify, and the categorical
and numerical features. Then, the user chooses whether
to force the split of the numerical features and selects the
correlation index to use. Clicking on the “Submit” button
leads to the second step.

At this point, the user selects the features to use for the
explanation and the interface displays the BAF obtained
after the transitive closure of attack and support relations.
The user can see the resulting BAF, including the updated
number of edges and connected components. Then, the
AF obtained from the BAF after removing the supports
is visualised.

In the last panel, the user can see the BAF before the
closure phase, the list of semi-stable extensions, and their
probability. Each extension in the list is accompanied by
a “Highlight” button which produces an explanation tree
for the analysed extension.

6. Conclusion and Future Work

We introduce a tool for an argumentative interpretation
of the answers provided by Machine Learning models,
proposing AFs to obtain a dialectical explanation. To this
end, we devise a procedure which allows the construc-
tion of an explanation tree representing the dialectical
reasoning among the features of the analysed problem
and explaining why a particular class is assigned. We
also provide a web interface to ease the use of the tool.

3 Arg-XAI web interface: http://arg-xai.dmi.unipg.it.
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In future work, alternative techniques could be applied
to break the symmetry of the graph and obtain a causal
relationship between arguments. It would also be inter-
esting to conduct studies with more complex datasets
(e.g., containing categorical features with a large number
of possible values). In this case, the produced BAF may be
too large to explain the assignment of a certain class, and
particular attention should be paid to simplifying the final
explanation tree. Notions of symmetry and interchange-
ability between arguments, as well as NLP-generated
textual explanations, could be used for this purpose. We
could also apply Subjective Logic models [25] and use the
weights on the BAF’s edges to obtain a better explanation
instead of just using them for computing the probability
of the extensions. Finally, we plan to implement other
extension-based semantics in addition to the semi-stable
one. A qualitative/quantitative comparison could also be
made between promising semantics.
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