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Abstract  
There is an astounding growth in the adoption of machine learners (MLs) to craft intrusion 

detection systems (IDSs). These IDSs model the behavior of a target system during a training 

phase, making them able to detect attacks at runtime. Particularly, they can detect known 

attacks, whose information is available during training, at the cost of a very small number of 

false alarms, i.e., the detector suspects attacks but no attack is actually threatening the system. 

However, the attacks experienced at runtime will likely differ from those learned during training 

and thus will be unknown to the IDS. Consequently, the ability to detect unknown attacks 

becomes a relevant distinguishing factor for an IDS. This study aims to evaluate and quantify 

such ability by exercising multiple ML algorithms for IDSs. We apply 47 supervised, 

unsupervised, deep learning, and meta-learning algorithms in an experimental campaign 

embracing 11 attack datasets, and with a methodology that simulates the occurrence of 

unknown attacks. Detecting unknown attacks is not trivial: however, we show how 

unsupervised meta-learning algorithms have better detection capabilities of unknowns and may 

even outperform classification performance of other ML algorithms when dealing with 

unknown attacks.  
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1. Introduction 

It is widely acknowledged that modern ICT 

systems such as industrial control systems [13], 

medical support systems [2], virtual environments 

[12], and the Internet of Things [1] can be the 

target of attackers [3], [17], [18]. There is 

significant evidence on the risk of cyberattacks, 

both in terms of the likelihood of being targeted 

and the cost and impact of a successful attack. 

The number of computer security incidents has 

been steadily growing over the past few years: in 

2021, SonicWall [11] reported an average of 28 

million cyberattacks detected daily, with 140 000 

of them being novel malware samples. Starting 

from 2020, the European Union Agency for 

Cybersecurity (ENISA) observed a spike in non-

malicious incidents, most likely because the 

COVID-19 pandemic became a multiplier for 

human errors and system misconfigurations, and 

attributed them as the root cause for the majority 

of security breaches [10]. 

The consequence of a successful cyberattack 

(simply termed an attack from now on) may range 

[25] from confidentiality issues to availability 

reduction or the loss of sensitive data and thus 

integrity concerns. Importantly, security threats 

may also have a safety impact; for example, an 

attack that aims at making the automatic braking 

system of a vehicle unavailable may also have 

severe impacts on the health of the driver, the 

infrastructures and the surrounding environment. 

Consequently, systems must be conceptualized, 

designed, and implemented to ensure that 

appropriate security requirements are met. 

Among the possible countermeasures, the 

detection of ongoing attacks is typically included 

in the mandatory security requirements [17], [18]. 

Intrusion detection systems (IDSs) are well-

known means to promptly detect attacks. Given a 

target system to protect, an IDS monitors its 

performance indicators: examples include 

memory usage [12], throughput of buses [13], 
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active sessions [14], and system calls [19]. The set 

of monitored values (i.e., features) gathered by an 

IDS at a given instant is called a data point: 

collections of data points are typically collected in 

the form of tabular datasets. An IDS contains a 

machine learning (ML) algorithm that performs 

binary classification [7], [9] (i.e., it is a binary 

classifier) discerning between data points 

corresponding to an attack and data points 

corresponding to the normal behavior of a system. 

The ML algorithm undergoes a training phase in 

which it processes a training dataset: it learns a 

model, which at a later stage will be deployed in 

the production environment to detect attacks 

occurring at runtime. 

Unfortunately, data points collected in the 

production environment may differ from the data 

points in the training dataset. This is a very 

frequent scenario for two reasons. First, systems 

are becoming increasingly more complex and 

dynamic, committing updates and 

reconfigurations. Consequently, training may 

quickly become obsolete [23] and reduce the 

effectiveness of the model learned. Second, 

during its operational life, a system may be 

targeted by attacks that were not known at training 

time, which we call unknown attacks. Unknown 

attacks are significant threats, with the same effect 

as zero days [3], , i.e., new attacks or variations of 

existing attacks that are specifically created to 

exploit new vulnerabilities. It is credible that 

during its life, a system will be the target of 

unknown attacks, [10], [11], [17]; therefore, IDSs 

must be prepared to deal with them to avoid major 

security issues. 

This paper reviews classifiers for intrusion 

detection, evaluating their capability to detect 

unknown attacks. We organize classifiers into five 

categories: unsupervised (UNS), supervised 

(SUP), deep learning (DEEP), supervised meta-

learning (META-SUP), and unsupervised meta-

learning (META-UNS). UNS classifiers do not 

use labels during training, i.e., they are not aware 

of whether a data point is an attack. In contrast, 

SUP and DEEP classifiers need labeled data 

points during training. The SUP and DEEP 

classifiers are both supervised classifiers, and the 

latter uses deep neural networks. We apply this 

distinction because the literature on ML for 

tabular data shows different classification 

performance between deep neural networks and 

other supervised classifiers. Often, DEEP 

classifiers are considered to perform worse than 

SUP on tabular data [8], [22]. Last, META-SUP 

and META-UNS are supervised and unsupervised 

classifiers, respectively, that employ meta-

learning: meta-learning uses knowledge acquired 

during base-learning episodes, i.e., meta-

knowledge, to improve classification capabilities 

at the meta-level [15]. META-SUP classifiers 

require labeled data for training, while META-

UNS classifiers do not. 

We exercise a total of 47 classifiers on 11 

public attack datasets, which we manipulate to 

simulate the occurrence of unknown attacks. Very 

briefly, the procedure is as follows. Some attacks 

are removed from the training datasets and used 

only for testing, which makes them unknown 

attacks. The whole procedure is repeated for all 

the attack categories and all the datasets. We 

analyze and compare the detection performance 

when the number of unknown attacks increases, 

and we explain which classifiers are more suited 

to detect unknown attacks. Our analysis reveals 

the following: 

• Classifiers suffer the introduction of 

unknown attacks, either because unknowns 

are undetected (especially when using DEEP 

and SUP classifiers) or because many false 

alarms are raised (this mostly occurs with 

UNS). 

• SUP, META-SUP, and, to a lesser extent, 

DEEP classifiers are effective in detecting 

known attacks, but their detection 

performance drops significantly when 

unknown attacks occur. 

• Instead, UNS classifiers have better 

detection performance of unknown attacks 

but are clearly outperformed by DEEP, SUP, 

and META-SUP when dealing with known 

attacks. 

Meta-learning enhances the classification 

performance of both SUP and UNS classifiers. 

Most noticeably and contrary to common 

knowledge, META-UNS classifiers based on 

bagging [5] and boosting [6] ensembles improve 

detection performance to a point at which they are 

slightly worse than SUP, META-SUP, and DEEP 

classifiers against known attacks but have 

superior ability to detect unknown attacks. 

2. Experimental Plan 

This section details the experimental setup to 

compare the detection performance of supervised 

and unsupervised classifiers, with and without 

meta-learning, addressing known and unknown 

attacks. We designed and performed a 
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quantitative evaluation organized into steps M1 to 

M5. 

M1. We collect 11 public datasets containing data 

about intrusion detection. These datasets 

contain features collected by monitoring real 

or simulated systems during their normal 

operation and when they are under attack.  

M2. We preprocess each dataset to obtain tabular 

CSV files. Each row of the CSV file 

represents a data point, and each column 

represents a feature, except for the last 

column, which is the binary label 

(normal/attack) and describes whether a row 

corresponds to an attack or the normal 

operation. 

M3. Preprocessed datasets are used to generate 

training variants. Very briefly, given a 

dataset split into a training set and a test set 

and one attack category, we remove all the 

attacks of such categories from the training 

set; this way, we obtain a training variant. 

We repeat this procedure for all 11 training 

sets and all attack categories contained in 

each dataset. In total, we obtain 58 training 

variants. Classifiers are trained on the 11 

training sets and the 58 training variants. The 

11 training sets include all the attacks that are 

in the test sets, meaning that all attacks are 

known by the classifier. The training variants 

miss one attack category each, which instead 

appears in the test sets; this is equivalent to 

having unknown attacks. An example is 

shown in Figure 1. 

M4. Afterward, we select classifiers from the 

categories SUP, DEEP, UNS, META-SUP, 

and META-UNS (see Table I). In total, we 

select 6 SUP, 4 DEEP, 11 UNS, 4 META-

UNS, and 22 META-UNS classifiers. We 

train each of the 47 classifiers on each of the 

11 training sets and each of the 58 training 

variants.  

M5. Finally, we collect the metric scores of all 

classifiers, and we create tables and plots to 

drive discussions and analyses. 

Experiments are executed on a Dell Precision 

5820 Tower with an Intel I9-9920X, GPU 

NVIDIA Quadro RTX6000 with 24 GB VRAM, 

192 GB RAM, and Ubuntu 18.04, and they 

required approximately 6 weeks of 24 h 

execution. We provide GPU support to exercise 

DEEP classifiers. 

The Scikit-Learn and xgboost Python packages 

contain all the code needed to exercise SUP and 

META-SUP classifiers, including mechanisms 

for grid searches. Instead, we exercised UNS and 

META-UNS classifiers through RELOAD [29], a 

Java open-source tool that includes many 

implementations of unsupervised classifiers and 

supports the creation of meta-learners. These 

frameworks allow the easy calculation of 

Accuracy (ACC), Matthews Correlation 

Coefficient (MCC), and Recall (REC) metric 

values. Classifiers were trained using the 

combination of parameters that resulted in the 

highest MCC after grid searches, embracing many 

hyper-parameter combinations. Overall, we 

trained each of the 47 classifiers on each of the 11 

training sets and the 58 training variants. Models 

obtained at the end of this process are used to 

evaluate detection performance. 

Notably, ACC, MCC, and REC metrics do not 

quantify detection capabilities with respect to 

unknown attacks. Therefore, we define two new 

quantities TU and FU similar to TP and FN but 

 

Figure 1. Creation of 4 training variants from the 

ISCX12 training set. The same approach is applied to 

the 11 datasets. The normal data (no attacks) in the 

training set and in the training variants are the same. 

Each training variant has one attack category less than 

the training set. The test set is the same for the 

training set and the training variants. 

Test SetTraining Set

ISCX12

ISCX12 

_NO(DoS)

ISCX12 

_NO(BruteForce)

ISCX12 

_NO(DDoS)

ISCX12 

_NO(Infiltration)

Name

Training VariantsName

Normal 

Data

BruteForce

Attack Data

DDoS 

Attack Data

Infiltration 

Attack Data

DoS 

Attack Data

Table I: Classifiers used in this study. 
 Uses Meta-Learning 
 No Yes 

S
u

p
er

vi
se

d
 

DEEP SUP META-SUP 

AutoGluon

, FastAI, 

Py-

Custom, 

TabNet 

kNN, LDA, 

Naïve Bayes, 

Logistic 

Regression, 

SVM 

Bagging: Random 

Forest 

Boosting: 

ADABoost, 

Gradient Boosting, 

XGBoost 

U
n

su
p

er
vi

se
d

 UNS META-UNS 

COF, FastABOD, G-

Means, K-Means, LOF, 

ODIN, One-Class SVM, 

HBOS, LDCOF, SDO, 

SOM, iForest 

Bagging: ensembles 

of each UNS 

Boosting: ensembles 

of each UNS 
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related to the occurrence of unknown attacks. 

Then, we combine TU and FU into the Recall-

Unknown (Rec-Unk) metric as follows: 

𝑅𝑒𝑐 − 𝑈𝑛𝑘 =  
𝑇𝑈

𝑇𝑈 + 𝐹𝑈
 

Rec-Unk shows the fraction of unknown 

attacks detected by the classifier out of all the 

unknown attacks. The higher the Rec-Unk is, the 

better coverage a classifier has in detecting 

unknown attacks. Computing Rec-Unk required 

writing a simple Python function that filters out 

normal data and known attacks from the test set. 

This way, it becomes easy to compute TU and FU. 

3. Discussion 

We evaluate the ability to detect unknown attacks 

of DEEP, META-SUP, and META-UNS. We 

avoid considering SUP and UNS classifiers 

because their meta-learning counterparts, META-

SUP and META-UNS, respectively, are definitely 

better. Figure 2 shows box plots for the META-

SUP XGBoost, DEEP AutoGluon, and META-

UNS FastABOD - Boosting classifiers with 

varying numbers of unknown attacks. These three 

classifiers have the best ACC and MCC scores in 

their groups. The blue box on the left of the figure 

draws MCC scores when no unknowns occur: 

XGBoost and AutoGluon scores are higher than 

those of FastABOD. However, increasing the 

percentage of unknowns in the test set makes the 

MCC of supervised and deep classifiers drop by a 

noticeable amount, whereas the MCC of 

FastABOD suffers only a minor degradation (see 

red, green, and purple boxes). 

We elaborate on this with the aid of Figure 3, 

which we built according to the following 

procedure. We train all classifiers using a training 

set, evaluate them on the test set and select the 

supervised (SUP, META-Sup, or DEEP) and 

unsupervised (UNSUP or META-UNS) 

classifiers with the highest MCC. These two 

classifiers are considered the best supervised and 

unsupervised approaches for a given training set. 

We repeat this process by training all classifiers 

using training variants, evaluating them on the test 

set, and selecting the supervised and unsupervised 

classifiers that have the highest MCC. Last, we 

repeat the procedure but measure Rec-Unk 

instead of MCC. In total, this produces 69 points 

in the figure, obtained from the 11 training sets 

and the 58 training variants. 

For each training set and training variant, we 

compute the difference in MCC (Figure 3a) and 

Rec-Unk (Figure 3b) between the two best 

classifiers previously selected. These differences 

are ultimately depicted in a scatterplot against the 

percentage of unknowns in the test set. As 

previously discussed, there are no unknowns 

when training on the training sets: the 

corresponding results are on the x=0 axes. In the 

other cases, the ratio of unknowns differs 

depending on the training variant, from 0.5% to 

almost 40%. Both scatterplots contain 69 items, 

i.e., one item for each training (on the 11 datasets 

and 58 variants). Items above the x-axis point to 

datasets or training variants where a supervised 

classifier is better than an unsupervised classifier. 

Clearly, different classifiers may be selected 

when varying the training sets and training 

variants. Particularly, the META-SUP XGBoost 

is selected in 36 out of 69 cases, the META-SUP 

Random Forests in 18 out of 69, and the DEEP 

AutoGluon in 10 out of 69. For unsupervised 

classifiers, FastABOD outperforms others in 26 

out of 69 cases, SDO in 12 out of 69, HBOS in 7 

out of 69, and ODIN in 6 out of 69. 

Figure 3a highlights that SUP, DEEP and 

META-SUP classifiers usually result in higher 

MCC scores, with fewer misclassifications – both 

FPs and FNs – than UNS and META-UNS 

classifiers. This trend becomes progressively less 

evident as the number of unknowns in the test set 

increases: on the right of the plot, the difference 

 

 

 
Figure 2: Box-plots showing the MCC scores of 

META-SUP XGBoost, DEEP AutoGluon and 

META-UNS FastABOD - Boosting classifiers when 

i) all attacks are known, ii) at most 10% are unknown 

attacks, iii) between 10 and 20% are unknown attacks, 

and iv) more than 20% are unknown attacks. 



5 

 

in MCC scores becomes almost negligible or even 

negative, meaning that there is a turning point at 

which unsupervised classifiers become better 

overall. Figure 3b shows the superior capabilities 

of UNS and META-UNS in detecting unknown 

attacks. The difference in Rec-Unk is almost 

always negative: unsupervised classifiers are 

better than supervised classifiers in identifying 

unknown attacks. 

4. Conclusions 

Supervised classifiers and, to a lesser extent, 

deep learners are usually accurate in detecting 

known attacks, but they cannot effectively detect 

unknown attacks (either brand new attacks, 

variants of existing exploits, or threats against 

which the intrusion detector is unprepared). 

Conversely, unsupervised classifiers are  usually 

less accurate than supervised classifiers, but they 

do not suffer major degradation in case of 

unknown attacks. This paper conducted an 

experimental analysis to compare supervised and 

unsupervised classifiers, with and without the 

adoption of meta-learning, to quantitatively 

analyze their ability in detecting known and 

unknown attacks. Results showed that 

unsupervised meta-learners are the best solution 

to detect  unknown attacks, and can detect known 

attacks similarly to several supervised classifiers. 

Summarizing, unsupervised meta-learning is a 

promising approach to implement IDSs: it offers 

satisfactory detection accuracy in case of both 

known and unknown attacks. 
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