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Context of the Research Activities

JThe SARS-CoV-2 pandemic highlights the need A’ @ i
to improve cooperation and knowledge sharing e G
to prevent disease spread and ensure quality ' v
patient care. DR ] | .l il
Juneven distribution of capacities and resources ; ' e
between healthcare organizations situated in small | PoseasoL ¢
centers and those in urban areas makes it difficult : I: N
to provide the same quality of healthcare services |: T . R A .
; Central Server P E
(The ICU4Covid project aims to create a European ; o b) &},
telemedicine network composed of a set of ? . P L=
independent Cyber-Physical Systems for Telemedicine | feni. < R e il oAy
and Intensive Care. a

ICU @
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Cyber-Physical Systems for Telemedicine and
Intensive Care Architecture (CPS4TIC)

1 A network of research institutions, medical
centers, and hospitals all around Europe join
under the umbrella of the ICU4Covid project.

) Each ICU Units equips with state-of-the-art
technology, such as a 5G module, radar sensors,
and Al chips.

U Integrates health-related data

L) Collects and integrates real-time health-related data from
wearables, sensors, and smart devices

(] Deploy an Al-based decision system to support doctors and

nurses with precise decisions, evidence-based treatment, 'ﬂ]
and efficient use of time resources. &
J .
ICU Unit




Learning in Distributed Environments

o Problem Training node

i . . L ~

> Traditional learning approaches are centralized ry " negregated |
- I I

> Need to move data from sources to a training node | @ Data |

. . i = i

> Privacy and Security Issues ! = !

\ /

o Federated Learning to handle these issues > A

o Definition of a federated learning approach for the training A %
of a time series (TS)-based model for the early
identification of both high-risk and low-risk hypertensive
patients in a federated environment
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> Move Local Model instead of Data 1 oo Voo )
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NO Privacy and Security Issues q_/ — CL/ = i q_/ = E
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CPS4TIC enhanced with Federated learning

° Integration between CPS4TIC and a federated learning architecture

1. Integrate a federated client in each Mona node
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2. End-to-end P2P encryption to communicate with an aggregator server #‘::-:,Iing i
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3. Definition of a global model to assist health professionals in the best patient treatment g, Process |
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Evaluation of the Federated Architecture —
Use Case Scenario

o Application of Federated Learning approaches in healthcare domain to support monitoring and
telemedicine systems
o Data

o Biomedical Signal - Electrocardiographic (ECG) - Holter recordings

I Sending Local Model I

I Aggregating Local Model I Single
Communication
Sending Back Global Model Round

o Training dataset

Updating Local Model

o QOpen Data (Physionet.net Repository)

o Distributed among different nodes

> Federated Configuration
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> Same network in each node \_____DatabaseD1’ \_____DatabaseD2 \_____DatabaseD3,/

Local node 1 Local node 2 Local node 3

o Hybrid Network: CNN + LSTM + DMM

—l —3 —

o Results

o Federated performance results comparable to the centralized
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Federated Architecture Validation

1. Initialize all nodes involved in the learning process

. Initialize Aggregator server and CPS4TIC system on nodel and node 2

. Initialize CPSATIC system on node3

2. After theinitialization, make each CPS4TIC node running
1.  Running CPS4TIC systems on node 1 and node2

2. Running CPS4TIC system on node 3
3.  After each node gets running, the learning process starts
. Aggregator Server waits for the models. The aggregation process will

start when the server receives all three CPS4TIS local models.

. Learning on CPS4TIC systems on node 1 and node2
. Learning on CPS4TIC system on node 3
. When the server collects all models, the aggregation starts

4.  Step 3 is repeated more times until the end of the training process
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Results Validation 1/2 - Local Models VS Global Model

Start Training
Collection and Comparison between the local models e fonrre »@) ®
and the global model A
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Results Validation 2/2 - Test validation

Prediction Test
* Take an ECG sample from CPS4TIC Hospitall following the
research activities d conducted by CNR

ECG of a High-Risk Patient

mv(v)

* Predict CPS4TIC Hospital2 model
* Predict the global model

True Value CPS4TIC Global Model
Hospital2 model
High 8 Low High 8
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Conclusions

* The centralized mode will require moving all data from its stored nodes to the node performing the
learning process. Thus, data security and privacy are compromised by this action.

* The federated approach prevents privacy risks since
no data are moved; only the federated model
parameters are transferred.
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