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Abstract
Deep Learning (DL) has shown to be a powerful tool for medical image analysis, with applications ranging from diagnosis to
treatment and followup. In this work, we present an overview of the field, with a focus on four specific applications. The first
application describes a contrastive learning approach for semi-supervised classification of fetal standard planes in ultrasound
images, to help medical professionals to identify anatomical landmarks and measure fetal growth. We then describe a system
for the automatic detection of stenosis in coronary angiography images, which can aid in the diagnosis and treatment of
cardiovascular diseases. In this application we also provide a focus on federated learning, using data from two different
medical centres to improve accuracy and generalizability. A further application regards the development of a DL model for
cancer segmentation in videoendoscopic frames of the larynx, to assist clinicians in cancer early detection and treatment.
Finally, we show a DL-based system to automatically monitor preterm infants in neonatal intensive care units. The system
makes use of images acquired with an RGB-D camera placed on top of the crib, to estimate the positions of anatomical regions
of interest. In this section we also give a perspective on green artificial intelligence, to develop fairer technologies, and on the
ethical aspects related to the use of DL in the actual clinical practice.
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1. Introduction
During the last decades, deep learning (DL), and in partic-
ular convolutional neural networks (CNNs), have under-
gone an increasing role in medical image analysis to offer
decision support and context awareness to clinicians, and
today an extensive literature exists [1].

Current challenges in the field include the high intra-
and inter-patient variability, the lack of standardized
guidelines to perform image annotation, the difficulty to
gather annotation from experts, and the paucity of pub-
licly available datasets, when compared to other fields,
such as natural image analysis. The reason behind these
challenges can be seen in the intrinsic nature of the im-
ages, which are considered sensitive data, with relevant
legal and ethical issues, and, to be annotated, require
efforts from clinicians that are already overwhelmed by
their daily activity. Furthermore, each medical imaging
modality brings its own additional characteristics, such

Ital-IA 2023: 3rd National Conference on Artificial Intelligence, orga-
nized by CINI, May 29–31, 2023, Pisa, Italy
∗Corresponding author.
Envelope-Open f.villani2@unimc.it (F. P. Villani)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

as low signal-to-noise ratio or poor boundaries [1].
This contribution summarizes main research activi-

ties of our group in the field of medical image analysis,
ranging from diagnosis to treatment and followup.

2. Fetal ultrasound imaging
Identifying standard planes during fetal ultrasound ac-
quisition is the first step for fetal biometry measurement
and organ evaluation. Today, this task is performed by
clinicians, who move the probe across the mother’s belly,
searching for specific anatomical landmarks. Typically
acquired planes include maternal cervix, fetal femur, tho-
rax and brain. Brain standard planes can be further clas-
sified in trans-ventricular (TV), trans-thalamic (TT) and
trans-cerebellar (TC). Even though an extensive literature
on this theme already exists [2], the problem of relying on
time-expensive data annotation has not been fully solved
in this domain. To mitigate the issue, in other fields of
medical image analysis, contrastive representation learn-
ing based on instance discrimination tasks has gained
much attention to incorporate unlabelled data in the train-
ing phase and improve classification performance despite
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Figure 1: F1-score obtained with E1, E2, E3 and E4 applied to Z-brain and considering different percentage of training data.
From left to right, results are shown for trans-cerebellar, trans-thalamic and trans-ventricular.

the limited amount of annotations. However, in the field
of fetal US, the advantages of this approach are still ques-
tioned.

We study contrastive learning for semi-supervised clas-
sification conducting a fair comparison among:

𝐸1 pre-training on ImageNet followed by supervised
finetuning: pretrained ResNet50 backbone using
ImageNet weights, to assess the benefit of transfer
learning using a large natural-image dataset.

𝐸2 self-supervised pre-training: ResNet50 backbone
trained from scratch using simCLR [3], to eval-
uate the effectiveness of initializing backbone
weights using contrastive learning.

E3 self-supervised pre-training starting from Ima-
geNet weights: E3 replicates E2 but training from
scratch is replaced with pretraining using Im-
ageNet weights, to assess whether combining
transfer learning and contrastive learning may
be beneficial.

E4 End-to-end dual task architecture: this training
includes a pretext-task based on contrastive learn-
ing and a classifier, both sharing the same back-
bone whose initial weights are those from Ima-
geNet.

We investigate how the classification performance
changes when considering different percentages of train-
ing patients, and datasets with high intra-class variability
(𝑍 −𝑚𝑢𝑙𝑡𝑖𝑐𝑙𝑎𝑠𝑠) and low intra-class variability (𝑍 − 𝑏𝑟𝑎𝑖𝑛).
The analyses are performed on the most recent publicly-
available dataset in the field1. Classification performance
is assessed quantitatively by means of F1-score to deal
with class imbalance. ANOVA test is performed to eval-
uate the presence of significant differences among the
four configurations. In addition, results are qualitatively
evaluated by looking at class activationmaps (CAMs) pro-
duced by each model, to assess the quality of the features
maps.

Figure 1 shows the results of E1, E2, E3 and E4 when
processing Z-brain. E2 showed the lowest performance
1https://zenodo.org/record/3904280

for all brain planes and with all the considered percent-
ages of training patients. We conjectured this behaviour
is due to the challenges of performing self-supervision
from a dataset (i) with low inter-class variability and (ii)
small in size (1527 images in total). E1 showed good
performance, reinforcing the concept that knowledge
obtained from a bigger dataset could also be beneficial
in a medical image contest [4]. E3 and E4 showed con-
sistently high F1-score for all brain planes and all the
percentage of training images. Good performances are
always reached when considering TC, having the plane
unique characteristics (e.g. presence of cerebellum and
cisterna magna) as opposed to TT and TV. As regards TT
and TV, since these planes are very close to each other, it
is more likely for them to be misclassified one with the
other. No significant differences were found when com-
paring E1, E2, E3, and E4 (ANOVA test p-value > 0.05) on
the various percentages of training patients. However,
this is not in accordance with the qualitative results ob-
tained with CAM. It is in fact clear from Figure 2 how E4
experiment influences the way the architecture looks at
the image in order to make a prediction.

Figure 2: Visual samples of CAMs obtained from E1 and E4
experiments considering 10% and 90% of annotated patients.
Compared to E1, E4 seems to focus on the most discriminative
landmarks during the decision making process.
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3. Stenosis detection from
coronary angiography

Coronary angiography is a medical imaging technique,
that uses X-rays and contrast dye to visualize the coro-
nary arteries: in practice, a thin catheter is inserted into
an artery and it is used to inject a radiocontrast agent,
that reveals arteries structure on X-ray images [5]. This
procedure is commonly used to diagnose and guide treat-
ment for coronary artery disease (CAD), which is caused
by the presence of stenosis, narrowing of coronary ar-
teries due to plaque buildups possibly leading to heart
attack and other cardiovascular complications. Stenosis
can be detected through this procedure by identifying
areas where the contrast dye is impeded or delayed in
its flow, however the accuracy of this procedure depends
on the expertise of the clinician, which needs to own a
detailed knowledge of normal coronary arterial anatomy
and its common variants [6]. To provide a more objec-
tive and reliable assessment of coronary artery steno-
sis reducing inter-observer variability, computer-based
methods are suited. More traditional computer-aided
systems use machine learning algorithms to automati-
cally identify stenotic lesions in the coronary arteries
involving several steps: preprocessing (i.e. enhancement
of the angiographic images to improve vessel visibility),
vessel segmentation, relevant features extraction (such
as vessel diameter, tortuosity, and stenosis severity), and
classification (vessel classified as stenotic or not based on
the extracted features). Recent studies [7, 8, 9, 10] have
shown that DL algorithms can achieve promising results
in stenosis detection from coronary angiography, even
though they have to deal with many challenges: for in-
stance, the poor contrast among vessels and background,
the variability of the coronary artery anatomy and the
appearance of stenotic lesions. To address these chal-
lenges, DL algorithms should be trained on large datasets
of angiographic images with varying levels of stenosis
severity, with images from different patients with vary-
ing anatomical variations and annotated from several
experts.

Hence, to tackle this problem, we are working on a
federated DL approach using data from two different
medical centres to improve the accuracy and general-
izability of stenosis detection models while preserving
data privacy. We collected 1566 coronary angiography
images from 245 patients (Dataset A) at the Ospedali
Riuniti of Ancona (Italy), annotated by three different
clinicians; at the same time a dataset of 8325 coronary
angiography images of 100 patients (Dataset B) reviewed
by one operator has been made available from Danilov
el al. [8]. As primary step, before adopting a federated
unified approach we trained and tested state-of-the-art
architectures with each dataset and we thoroughly ex-

Figure 3: Samples of coronary angiographic images from
Dataset A (first row) and Dataset B (second row) with the
associated prediction (ground truth bounding box in red and
predicted bounding box with confidence score in green).

plored distribution and similarity of the two datasets. The
performance achieved by training state-of-the-art mod-
els with each dataset are evaluated and the best results
are achieved with a Faster RCNN architecture reaching
a F1-score value of 0.63 for testing set of Dataset A (112
images of 25 patients) and 0.84 for testing set of Dataset
B (830 images of 3 patients). An example of stenosis
detection is reported in Figure 3. These preliminary out-
comes result to be in line with current literature [8, 9, 10],
however they show strong differences strictly dependent
on data characteristics. In fact, the two datasets have
noticeable differences, and Dataset A is particularly com-
plex because it includes fewer images frommore patients,
which results in higher variability; additionally, it has
been annotated by multiple operators and the images
are noisier due to the presence of distracting objects like
suture points. As a result, the use of domain adaptation
techniques is being considered.

Overall, DL techniques have already shown great po-
tential in this field, and future developments are expected
to further improve the accuracy and provide an efficient
and general support for CAD diagnosis, ultimately lead-
ing to better patient outcomes.



4. Cancer detection from
narrow-band laryngoscopy

While promising results have been obtained in several
image modalities, the analysis of videoendoscopic frames
still represents a challenge [11]. This may be explained
considering the peculiar challenges of endoscopic videos,
including poor contrast, low signal-to-noise ratio, pres-
ence of motion blurring, and tissue motion. DL ap-
proaches applied to video-analysis are of particular inter-
est in the field of head and neck oncology, given that endo-
scopic examination is a crucial step in diagnosis, staging,
and follow-up of patients affected by upper aerodigestive
tract (UADT) cancers. Instance segmentation is partic-
ularly suited to the context of UADT endoscopy since
different alterations (e.g., concomitant inflammatory or
benign lesions) can be frequently encountered in the field
of view together with the target lesion, and due to the
fact that patients with head and neck cancers can de-
velop distinct islands of neoplastic or dysplastic mucosa
(i.e., field of cancerization) that might involve various
portions of the videoframe, even without continuity.

Our approach to UADT cancer segmentation makes
use of a Mask R-CNN [12], which consists of a backbone,
a Region Proposal Network (RPN), and three heads for
classification, bounding-box regression, and segmenta-
tion. As backbone, we used a ResNet50 pretrained on
the COCO dataset combined with the Feature Pyramid
Network (FPN), to extract features from the input frame
at multiple scales. Starting from the features computed
with the backbone, the RPN identifies candidate regions
containing the tumor. For each of the proposed regions,
the final bounding box containing the tumor and the
tumor segmentation are obtained from the three heads.

The study was performed including videoendoscopies
acquired from 323 patients treated at the Unit of Otorhi-
nolaryngology - Head and Neck Surgery, University of
Brescia, Italy for UADT cancer. A total of 1034 videoen-
doscopic frames was selected from a dedicated archive
and anonymized. Three different subsets were gener-
ated according to the lesion primary site: oral cavity,
oropharynx, and larynx/hypopharynx. To train and test
the algorithm, the dataset was further split over patients
balancing the three classes into three sets: 935 images
from 290 subjects for training, 48 images from 16 subjects
for validation, and 51 images from 17 subjects for testing.

The tumor segmentation performance was measured
using the Dice similarity coefficient (𝐷𝑆𝐶) and other spa-
tial overlap-based metrics as accuracy (𝐴𝑐𝑐), recall (𝑅𝑒𝑐),
specificity (𝑆𝑝𝑒𝑐), precision (𝑃𝑟𝑒𝑐) and intersection over
union (𝐼 𝑜𝑈) which achieved the following values when
computed on the test set: 𝐷𝑆𝐶 = 0.79 ± 0.23, 𝐴𝑐𝑐 = 0.91
± 0.12, 𝑅𝑒𝑐 = 0.91 ± 0.22, 𝑆𝑝𝑒𝑐 = 0.93 ± 0.12, 𝑃𝑟𝑒𝑐 = 0.85 ±
0.24, 𝐼 𝑜𝑈 = 0.73 ± 0.27.

Figure 4: Visual samples of the segmentation results. From
left to right: raw endoscopic frames, ground truth annotations,
and predictions obtained with the proposed method.

Sample segmentation results are shown in Fig. 4 to
visually compare the results of the proposed model with
the ground truth. This study includes three sites of the
UADT to allow a comparison of the algorithm’s diag-
nostic performance in different anatomical areas. The
algorithm was able to identify and segment the lesion in
76.5% of cases, and showed remarkable diagnostic accu-
racy. Interestingly, results were significantly inferior in
the oral cavity, where all outcome measures underper-
formed when compared with larynx/hypopharynx and,
in some cases (in terms of accuracy), oropharynx. This
result is possibly related to the wide variety of epithe-
lial subtypes observed in the oral cavity, which produce
additional complications to the oral examination (e.g.,
presence of light artifacts), and confounding factors (e.g.,
tongue blade, teeth, or dentures) that the DL algorithm
must learn to take into account.

5. Infants’ monitoring with depth
images

The assessment of the quality of preterm infants’ sponta-
neous motility is recognized as a highly reliable tool to
early diagnose future neuro-motor impairments, which
premature children develop much more frequently than
the rest of the population [13, 14, 15]. Despite its rec-
ognized clinical relevance and reliability, the diffusion
of this assessment is currently hindered by its high eco-
nomical and temporal requirements. In fact, the clinical
evaluation of the quality of these movements is entrusted
to highly-trained clinicians who need to monitor the
infant for a sufficiently long time. Consequently, this
practice emerges as time-consuming, discontinuous, and



Figure 5: Acquisition set-up in a Neonatal Intensive Care
Unit, and example of limb-pose estimation from a depth-video
frame via BabyPoseNet, the segmentation CNN described
in [17].

expertise-dependent, and the final diagnosis is extremely
subjective and prone to fatigue bias, as well as to inter-
subject variability.

To overcome these issues, to support clinicians in this
delicate assessment, and to spur the diffusion of this im-
portant practice, our research group works on the design
and development of a DL-based system to automatically
monitor preterm infants in neonatal intensive care units
(NICUs). In particular, the system relies on an (RGB-)D
(RGB and depth) camera to be placed on top of a crib and
to constantly monitor the infant. The choice of using
depth images was driven by the necessity to protect the
privacy of the people involved, whether it’s the children
or their parents, or the clinical personnel who interacts
with the infant. This allowed us to collect a dataset (the
BabyPose dataset [16]) that we could make publicly avail-
able without any privacy-related concern.

Our first approach [17] involved two cascaded CNNs,
a U-Net-based segmentation network and a regression
network to refine the predictions of the positions of
the anatomical regions of interest (the 12 joints of the
limbs and the 8 connections between them). In particular,
the segmentation network (BabyPoseNet) features a bi-
branch architecture, which means that every stage of the
CNN process the information in two parallel branches,
and concatenates the two thus-obtained processed data
back into one single tensor. This choice is driven by the
fact that the two families of entities that the network

needs to localize (joints and joint-connections) are very
different, yet belong to one body. As can be seen in Fig.
5, this first method showed promising results (average
DSC = 0.80, average Rec = 0.70), so the second step was
to improve the prediction performance by using the tem-
poral continuity of the movements. Hence, the second
approach [18] involved the use of 4-dimensional tensors,
i.e., video batches of consecutive frames. The new tem-
poral information improved the performance: DSC val-
ues improved by 0.03/1, and the Rec values improved by
0.07/1. However, due to the bi-branch structure and the
4-dimensional data handling, this second framework is
particularly expensive in terms of computational require-
ments, which usually entail more expensive hardware.
Since these technologies are intended for healthcare, a
sector which is notably subject to inequalities, developing
expensive frameworks is an unfair practice.

Therefore, following the principles of Green AI [19],
we chose to develop fairer technologies, that could per-
form well enough to be used and relied on by the health-
care sector, but that require less computation (and that
are, henceforth, less expensive) than the existing ap-
proaches in state of the art. This line of research led
us to modify the previously designed 2D segmenta-
tion CNN (BabyPoseNet), to obtain a new architecture
(TWinEDA [20]) that exploits lightweight approxima-
tions of otherwise computationally-intensive traditional
convolutions (like asymmetric and dilated convolutions)
to reduce the computational load required to process the
data. TwinEDA is twice as fast as BabyPoseNet when
processing single frames, requires less than half the num-
ber of Floating Point Operations, but its performance is
totally comparable with that of BabyPoseNet, both in
terms of DSC and Rec. Current research involves the use
of Knowledge Distillation, a technique to transfer the
knowledge learnt by a big CNN into a smaller and/or
more shallow one, without significant accuracy losses.

Additionally, we are also carrying out research on the
ethical aspects related to the use of DL in the actual clini-
cal practice, especially when the practice involves infants
and their images. Thanks to the collaboration with artifi-
cial intelligence ethicists, and clinicians from the Salesi
Hospital (Ancona, Italy), we identified the most proba-
ble ethical issues that might arise from the application
of this kind of technologies to a clinical environment.
We outlined a framework to help DL researchers design
technologies that are trustworthy and accountable by
design, which is of crucial importance to overcome the
very widespread mistrust towards artificial intelligence,
especially when applied to the healthcare domain.



6. Conclusion
This contribution summarized our most recent research
work in the field of medical image analysis. We plan to
push the state of the art in the field forward by working
on (i) semi, weak and self-supervised learning to attenu-
ate the issue of having small annotated datasets, (ii) model
efficiency, to reduce the energy consumption and CO2
emission when training and deploying our algoritms and
be aligned with the European Green Deal, (iii) federated
learning, for data-private multi-institutional collabora-
tions, where model-learning leverages all available data
without sharing data between institutions and (iv) adher-
ence to the ethics guidelines for trustworthy AI and to
the AI act for what concerns legal aspects of AI.
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