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Metaverse

Virtual environment where healthcare professionals, patients, and
researchers can interact and collaborate using digital technologies.
In healthcare, the metaverse can be used to improve the efficiency
and effectiveness of healthcare services, as well as provide new
opportunities for research and innovation.

It requires a range of technologies, including Al, which can be used
to create realistic simulations of healthcare scenarios, analyze
patient data, and provide personalized recommendations.
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Multimodal Learning

« Multimodal learning involves the integration of heterogeneous data
from multiple sources extracted from the observation of the same
phenomena or problem.

* The use of multimodal data sources allows the extraction of a
complementary, more robust and richer data representation, with
the aim of improving performance compared to the use of a stand-
alone modality.
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When, How and Which?

« When: At which level should the modalities be fused?

« lterative algorithm that increases the number of fusion connections.
« How: How should the modalities be fused?

« Optimizing the setup of a multimodal end-to-end model.
« Which: Which modalities should be fused? Which models?

« Multi-objective optimized ensemble search.
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Multimodal Ensemble for Overall Survival

* In a classification task it is hard to understand a priori which

classifier is best suited to obtain good results.
« A typical workflow would be to test multiple classifiers and then
choose the single classifier which performs the best on a validation

set, or combining all of them.
« Goal: Find optimal set of classifiers whose aggregation obtains

better performance than any single classifier.
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Multimodal XAl

« The major disadvantage of DNNs is their lack of interpretability:
« XAl produces information to make a model's functioning clear or easy
to understand.
« The literature is well advanced for unimodal models but it lacks
research for MDL.
« Goals:
« |llustrate the reasoning behind the decisions taken by the model.
« Show the relative contribution of each modality in making the
decision.
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Federated Learning

« Sensitive patient data must be protected to avoid privacy
violations.

« To address this issue, federated learning has emerged as a potential
solution.

 New paradigm: a token is passed in each epoch sequentially or
randomly among the clients, which is intended to allow the weights
to be sent to the server only by its owner.

« Eliminating the role of the server and halving the number of
parameters sent in each round.
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Resilient Al

* In healthcare, unstructured, noisy, incomplete, limited in number,
or partially inconsistent data is a significant challenge.

* In Al, such situations could impact models' accuracy and reliability,
leading to incorrect or biased outcomes.

« Developing resilient Al systems able to handle such types of data is
crucial in a Metaverse for Intelligent Healthcare.
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Missing Features

Missing data is a common problem in healthcare datasets, occurring
when some information is not available for some patients or

variables in a dataset.
Missing data not only could bias the results, but it often contrasts
with the needs of Al models, which often require complete data to

function properly.
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Siamese Networks

It is well known that the Al's power of analyzing vast amounts of
data is an element lying behind models' performance.
Data availability is a major barrier in many domains, healthcare and

metaverse included.
To overcome this limitation, Siamese networks are a viable

alternative, which utilize inter-class diversities and intra-class
similarities, augmenting the number of instances (triplets).
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Name-entity Recognition

In EHRs physicians register relevant information about patients:
symptoms, the diagnosis, family history, treatments, the evolution at
the time. But can be difficult to analyze being unstructured data
and complex clinical language.

NER is the task of identifying and categorizing key information
(entities) in text. An entity can be any word or series of words that
consistently refers to the same thing.

Fine-tuning BioBIT and Focal loss to handle class imbalance to use
the concepts extracted as features for precision medicine system.
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Virtual Scanner

In @ metaverse for intelligent healthcare, a virtual scanner refers to a

computer-generated imaging device that uses virtual reality
technology to create medical images of a patient's body.

Without the need for invasive procedures, also minimizing patient
discomfort as well as allowing medical professionals to view and
manipulate images in ways that would not be possible with

traditional imaging techniques.
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Virtual Contrast Enhancement

« CESM is a dual-energy technique for breast imaging. The injection of
an iodinated contrast medium enhances lesion visibility. This results
in higher diagnostic accuracy compared to standard mammography.

* Issue: The use of the contrast medium can have side effects, and
CESM involves a higher radiation dose than standard mammography.

« Solution: Generative models performing Virtual Contrast
Enhancement on CESM images.
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MR to sCT translation

Taking multiple images can be cost-prohibitive, burdensome to the
patient, and problematic in light of CT ionization risk. For these
reasons, MR-only treatment planning has become an attractive
alternative -> MR-to-CT image translation.

GANs are commonly used to synthesize new images but current
methods do not allow control over the generation process, and
especially not for data augmentation.

We provide a guide to the generation process considering the trade-
off between fidelity and diversity in the generated images.
Generating paetints "close but not too close’” to the training data.
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Low-dose CT Denoising

It has become common practice to use LD acquisition protocols
which minimize the radiation exposure for the patient, decreasing
of the overall SNR, compromising the diagnostic quality of the CT
scans.

From the hypothesis that the noise due to LD protocols has a
textural nature, thus a texture-based loss will be beneficial during
training allowing a better denoising quality and faster training.
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Thanks for your time

For any doubts and suggestions, contact:
valerio.guarrasi@unicampus.it
or
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