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Our directions

Possibility to explore more complex deep architectures, combining unimodal ; ' '
networks, with an exacerbation of the problem of understanding '

Translating XAl to Multivariate Time Series

Boosted attention on TS classification models together with the
need to explain them

Multimodal XAl IE,-E;I

Towards eXplainable Medical Concepts

In the medical field identifying anatomical structures or tissue features that can be
Ai defined as relevant on an abstract scale is much more challenging and these
elements may not be unambiguously defined



Translating XAl to Multivariate Time Series

Explaining a real-world multimodal task of anomaly detection

on telematics data from vehicles’

black-box, where the

available modalities are acceleration MTS and velocity UTS
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Translating XAl to Multivariate Time Series
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Explaining a real-world multimodal task of anomaly detection

on telematics data from vehicles’

black-box, where the

available modalities are acceleration MTS and velocity UTS
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Translating XAl to Multivariate Time Series

Explaining a real-world multimodal task of anomaly detection
on telematics data from vehicles’ black-box, where the
available modalities are acceleration MTS and velocity UTS
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Multimodal XAl

Supervised multimodal fusion applied to early identify
Y X @ patients at risk of the severe outcome, like intensive care or
COVID-I9 death, among those affected by SARS-CoV-2, and using chest
N A @ X-ray (CXR) scans and clinical data.

Materials and Methods
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Multimodal XAl

Supervised multimodal fusion applied to early identify
patients at risk of the severe outcome, like intensive care or
death, among those affected by SARS-CoV-2, and using chest
X-ray (CXR) scans and clinical data.
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Multimodal XAl
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Materials and Methods

Supervised multimodal fusion applied to early identify
patients at risk of the severe outcome, like intensive care or

death, among those affected by SARS-CoV-2, and using chest
X-ray (CXR) scans and clinical data.
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AlforCOVID imaging archive
- 820 patients CXR and clinical data

A-shifted counterfactual multimodal
reconstructions and output:

&7 = Dan(hy)

0Cuyrp(h)

oh Yy = CMLP<h>\>

as A increases, we expect a flip of
the predicted class.




Multimodal XAl
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Al Evaluation

Supervised multimodal fusion applied to early identify
patients at risk of the severe outcome, like intensive care or
death, among those affected by SARS-CoV-2, and using chest
X-ray (CXR) scans and clinical data.

Model

Our proposal

(three-stage training)

Validation Accuracy

76.75+£5.32
74.21+6.08
76.77

Sensitivity Specificity

78.58+£6.48  74.55+5.86

76.73-18.88 68.40+-15.46 No significant decrease
78. 54 ' 7 n 57 ' with respect to literature

cV 76.90+5.40 78.80+6.40  74.70+5.90
AltorCOVID [9] LOCO 743046.10 76.90+18.90 68.50+15.50
Ry Survey 68.75 43.75 93.75

R Survey 72.92 70.83 75.00

R Survey 76.04 70.83 81.25

Ry Survey 72.92 62.50 83.33




Multimodal XAl

XAl Evaluation

Supervised multimodal fusion applied to early identify
patients at risk of the severe outcome, like intensive care or
death, among those affected by SARS-CoV-2, and using chest
X-ray (CXR) scans and clinical data.

High intersection between the multimodal explanation and the experts ground truth

* The modality normalized absolute differences:
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The more a modality
embedding has changed, the
more important it is for the
classification of a given sample.

Feature absolute distance, to understand how
much each feature has shifted:

Ar = |&r — 27

A; =& — &7

The more a feature changes, the
more important it is for the
classification.
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Multimodal XAl

XAl Evaluation

Supervised multimodal fusion applied to early identify

patients at risk of the severe outcome, like intensive care or
death, among those affected by SARS-CoV-2, and using chest
X-ray (CXR) scans and clinical data.

High intersection between the multimodal explanation and the experts ground truth

Challenges and perspectives

» More modalities at play

» To tackle the problem of missing
modalities especially from the
explanation view point.
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Towards eXplainable Medical Concepts

Saliency Map

v

Interpret pixel map of the decision

Lack of texture-level explanation

TCAV and the Concept-Based Interpretability

Interpretation of Human-friendly

Concepts defined by users

No intuitive way to define
medical concepts

FNQEN



Towards eXplainable Medical Concepts

- * 191 Patients

e 22384 CT slices
* Retrospective
Clinical features

Medical Concepts Extraction

Automatic identification of common texture
information related to the micro and macro
structural properties of biomedical tissue.

Challenges
* High images complexity
* Subjectiveness in experts Interpretations



Towards eXplainable Medical Concepts

Automatic identification of common texture
information related to the micro and macro
structural properties of biomedical tissue.
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C-omputer Systems and
Bioinformatics

Thanks for your time

For any doubt or suggestion

Rosa Sicilia, r.sicilia@unicampus.it

Assistant Professor (RTDA)

Computer Systems & Bioinformatics Laboratory

Department of Engineering, University Campus Bio-Medico of Rome
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